

ZSOIL.PC 2020 用户手册

教程

在干燥或部分饱和介质中的 土壤、岩石和结构力学

Copyright 1985-2020 Zace Services Ltd, Software engineering P.O.Box 2, 1015 Lausanne, Switzerland Tel.+41 21 802 46 05, Fax 802 46 06 https://www.zsoil.com, Hotline <u>hotline@zsoil.com</u>

教程 ZSoil[®].PC 2020 手册

A. Truty Th. Zimmermann K. Podleś R. Obrzud with contribution by A. Urbański and S. Commend

Zace Services Ltd, Software engineering P.O.Box 2, CH-1015 Lausanne Switzerland (T) +41 21 802 46 05 (F) +41 21 802 46 06 http://www.zsoil.com, hotline: hotline@zsoil.com

since 1985

提醒

ZSoil.PC 会定期更新以进行细微更改。我们建议您以 ZSoil 所有者的身份向我们发送邮件,以便我们通知您更新内容。否则,请定期访问我们的网站并下载免费升级到您的版本。

手册的最新更新始终包含在联机帮助中,因此与您印刷的手册的细微差别可能会表现在时间上;如有疑问,请始终参阅最新版本的在线手册。

ZSoil.PC 2020 手册: 1.数据准备 2.教程和基准测试 3.理论

ISBN 2-940009-08-2

Copyright ©1985–2020 by Zace Services Ltd, Software engineering. All rights reserved.

Published by Elmepress International, Lausanne, Switzerland

Zace的ZSoil[®]软件的最终用户协议 适用于V2020所有版本:专业&学术、单用户&网络 基于Windows 7, 8, 10

仔细阅读本文件,它是您与 Zace Services SA (Zace) 之间针对上述标识软件产品的协议。通过安装、复制或以其他方式使用上述标识软件产品,即表示您同意受本协议 条款的约束。如果您不同意本条款协议,请及时将未使用的软件产品全额返还至您获 取的地方,退还已付价款。ZACE SERVICES SA 对 ZSOIL 提供 60 天退款保证。

ZSOIL(适用的软件及相关热线服务)软件产品许可:

ZSOIL软件受版权法和国际版权条约以及其他知识产权法和条约保护。ZSOIL 软件产品通过授权的形式使用,而非出售。

- 1. 授权许可
- A: Zace Services SA (Zace)授权您(客户),一个非独占许可来使用N_{购买}(=购买的许可数量)ZSOIL的副本。您可以在不限数量的计算机上安装ZSOIL的副本,前提是您仅能使用N_{购买}时的副本。
- B: 您可以制作无限数量的ZSOIL随附文件的副本,前提是此类副本只能用于用于内部使用,不得重新发布或分发给任何第三方。
- C: 协议的期限可能是有限的,也可能是无限的,具体取决于购买的许可证。 ZSOIL V2020 永久许可自购买之日起,将获得为期 4 年的支持。此支持仅限于 ZSOIL V2020 升级,基于Windows 7、8、10。
- 2. 版权

软件(ZSOIL)产品的所有所有权和版权(包括但不限于图像、照片、文本、小程序等),随 附材料和ZSOIL的任何副本均归Zace Services SA所有。ZSOIL受版权法和国际条约规定。因 此,您必须像对待任何其他受版权保护的材料一样对待ZSOIL,除非您可以制作用于备份或存 档目的的软件副本,或按照上述第1节的规定安装软件。

- 3. 其他权利和限制
 - A: 对于逆向工程、反编译、反汇编的限制。您不得反向工程,反编译或拆卸软件(ZSOIL)
 - B: 没有模块的分割。ZSOIL是作为单一产品许可的,既不是软件的模块,也不是任何升级可以分开使用当超过N_{购买}使用的时候。
 - C: 出租。您不得出借、出租或租赁软件产品。
 - D: 软件转让。您可以永久转让您在本协议项下以及在领土(所在国内购买和交付的所有权),前提是您不保留任何副本,并且收方同意本协议的所有条款。
 - E: 终止。如果您不遵守本协议的条例,Zace Services SA可以在不损害任何其他权利的情况下终止本协议本协议。在这种情况下,您必须销毁本软件的所有副本。

保证和保证的限制

- 1.免责声明
 - ZSOIL,由Zace Services SA开发的一个用于分析地上或地下结构的有限元程序,其中土壤/岩石和结构模型被用来模拟土壤,岩石和/或结构的行为。ZSOIL代码及其土壤/岩石和结构模型 是经过精心开发的。虽然已经进行了系统的测试和验证,但这也并不能保证ZSOIL代码没有错 误。此外,通过模拟岩土和/或结构问题有限元方法隐含地涉及一些不可避免的数值和建模错 误。ZSOIL是一款旨在提供给仅由经过培训的专业人员所使用的工具,不能替代用户的专业判 断或独立测试。模拟现实的准确性在很大程度上取决于用户对问题建模的专业知识,理解土和 结构模型及其局限性,模型参数的选择,以及判断可靠性的能力的计算结果。因此,ZSOIL只 能由拥有上述专业知识的专业人员使用。当用户将计算结果用于岩土工程设计时,他/她必须 意识到他/她的责任。Zace Services SA对于基于ZSOIL计算输出的设计错误,Services SA不承 担任何责任。用户全权负责建立独立程序,以测试ZSOIL计算的任何输出结果的可靠性、准确 性和完整性。

2.有限保证

Zace Services SA保证ZSOIL将 a) 自收到之日起 90 天内,基本上按照随附的书面材料执行,并且 b) 自收到之日起一年内,产品随附的任何硬件都不会存在材料缺陷正常使用和服务的工艺。

3.客户补救措施

Zace Services SA的全部责任和您的唯一补救措施应由Zace选择,要么 a) 退回已支付的价格,要么 b)修理或更换不符合 Zace 有限保修的软件或硬件组件,并被退回到Zace Services SA,并附上付款证明的副本。如果软件或硬件组件是由事故、滥用或误用造成的故障,则此有限保证无效。任何软件或硬件组件的更换都将得到保证原始保修期的剩余时间或 30 天,以较长者为准。

没有其他保证。

您承认并同意 ZSOIL 是在"原样"和"可用"的基础上提供的,并且您对ZSOIL以及由此访问 的任何第三方内容和服务的使用或依赖位于您的唯一风险和自由裁量权。ZACE SERVICES SA 及其附属公司、合作伙伴、供应商和许可方特此拒绝任何和所有关于ZSOIL和第三方的陈述、保 证和保证派对内容和服务,无论是明示的、暗示的还是法定的。在最大范围内根据适用法律, ZACE SERVICES SA 不承担所有其他明示或暗示的保证,包括但不限于对特定商品的适销性和 适用性的暗示保证目的,关于软件产品和任何随附硬件。不承担任何责任。在法律允许 的最大范围内,ZACE 服务在任何情况下均不得对任何特殊的偶然事件、间接事件或后果性事件 承担任何责任(直接由您承担)任何损害(包括但不限于因业务、利润、业务损失而造成的损害)中断、业务信息丢失或任何其他经济损失)因使用或无法使用 ZSOIL,即使 ZACE SERVICES SA 已被告知发生此类损害的可能性。

其他规定。

热线:如果包括在内,在购买后的第一年,Zace Services SA 将通过专门的电子邮件提供热线帮助。本服务不包括对实际项目的所有形式的咨询。此热线援助可以在接下来的几年中续订(最多3年),平均成本为当前全包价格的15%。

专业版的ZSOIL是指在实践中与研究中心使用。

学术VERSIONS的ZSOIL都是为了学术机构的教学和研究,以独占使用。

学术的咨询VERSIONS的ZSOIL都是为了教学,科研要专用,学术机构的咨询。

适用法律及管辖权本协议受瑞士(实证法)管辖,因本协议或使用ZSOIL而产生的 或与之相关的所有争议均由沃州(洛桑区)的普通法院独家解决。

Copyright©1985-2020 Zace Services SA, Lausanne, Switzerland

LAUSANNE 18.02.2020

教程目录

前言9
第一章 二维问题11
1.1 开挖稳定性分析12
1.2 如何在外部荷载下求解轴对称问题15
1.3 如何求解固结问题19
1.4 求解桩板墙问题23
1.5 如何求解稳态流问题28
1.6 如何在城市环境中模拟隧道31
1.7 热传导的力学分析
1.8 基于区域折减法的土-结构动力相互作用
1.9 土钉支护垂直开挖78
第二章 三维问题
2.1 混凝土箱容器
2.2 排水混凝土坝101
2.3 加筋土桥台105
2.4 采用桩加固的基础筏112
索引117

前言

本部分所包含的示例如下所示:

- 说明数据准备技术的某些方面;
- •展示程序处理不同真实案例的能力;
- •展示后处理器使用中最重要的方面。

在模型生成的过程中描述操作的方式是最佳的,为了尽可能减小用户 学习的难度,并尽可能自动化数据生成的过程。

本章中包含的所有示例将首先简要介绍,然后是创建模型的所有主要 步骤,计算和可视化结果将以视频链接的形式呈现在手册中。

有关理论背景,请参阅**理论手册**。对于系统描述 od 数据准备技术见 数据准备。

二维问题 三维问题

第一章 二维问题

1.1 开挖稳定性分析

如何.....

- 1.2 在外部荷载下求解轴对称问题
- 1.3 求解固结问题
- 1.4 求解桩板墙问题
- 1.5 求解稳态流问题
- 1.6 在城市环境中模拟隧道
- 1.7 热传导的力学分析
- 1.8 基于区域折减法模拟土-结构动力相互作用
- 1.9 模拟土钉的垂直开挖的

1.1 开挖稳定性分析

- 数据文件: tutorials/cut.inp
- 问题描述

本课程的目的是熟悉 ZSoil 的环境,特别是图形化的面向对象的前处 理器和后处理器。在这篇教程中,会用到半自动网格的宏-建模方式。

• 工程草图

下图显示了开挖4m深的几何形状。

• 项目预选

在项目预选对话框中(在ZSoil®主界面中选择 File/New 时,会自动出现), Analysis type 选择 Plane Strain, Problem type 选择 Deformation,这样就可以进行单相平面应变分析。

Preselections	×
Version type	Advanced
Analysis type	Plane Strain
Problem type	Deformation 💌
Project prese	lection
Frames o	nly Structures only
C Show me	aningful options only
Show all o	options (meaningful options in black, other in gray color)
C Show all o	options (all in black color)
Project title	Zsoil example
Model description	
Author	ZACE
-	ZACE
Company	
Company Unit system	My Units Show

• 驱动器

在 ZSoil 中驱动列表包含计算模块需要以什么顺序计算什么的信息。 在岩土工程中为了获得开挖分阶段施工的所有主要步骤的结果,必须考虑 到固体和流体边界条件的改变,必须复制现实中的主要步骤。

选择 Control/drivers 来设置驱动器列表。Driver 选择 Stability, Type 选择 tan(φ)-c 强度折减法,指定安全系数的初始值、结束值和增量。本示例计算将从安全系数 (FS) 等于1开始,然后 1.05, ... 直到发生发散(检测到失稳)或者到达了结束值。

学习如何设置驱动器列表,观看视频设置驱动器。

• 材料

在这个例子中,使用了由莫尔-库仑弹性-完美塑性模型描述的单一材料。材料的属性在下表中给出。

材料	模型	数据组	属性	单位	值
		硝基	Е	$[kN/m^2]$	40000
		计注	υ	-	0.3
		重度	Y	[kN/m ³]	19
1 上层	Mohr Coulomb		φ	[°]	30
1 1 1	Wolli-Couloillo		Ψ	[°]	0
		非线性	С	$[kN/m^2]$	16
			Rankine cut-off	-	OFF
			Dilatancy cut-off	_	OFF

要编辑材料属性,请使用 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

• 所有数据准备步骤的总结(视频)

- 1. 创建一个新项目
- 2. 创建宏模型
- 3. 在子域中创建网格
- 4. 创造固体边界条件
- 5. 编辑材料
- 6. 设置驱动器
- 7. 运行计算
- 8. 可视化结果

1.2 如何在外部荷载下求解轴对称问题

- 数据文件: tutorials/foota.INP
- 描述

本例中考虑的是典型的圆形基础。图 1.1 说明了基础的总体结构。

求解承载力问题的传统方法是将朗肯场与普朗特场结合,以满足静力 容许破坏区。这些失效区域的不同组合可能导致大量可能的解决方案。为 了验证这些解,需要证明这些解中所采用的应力场对应一个唯一的位移 场。这几乎是不可能实现的。ZSoil[®].PC 在另一方面采用一种简洁的解决 方案来找到满足塑性理论要求的位移和应力相容的解。

• 工程草图

图 1.1 轴对称基础问题

• 项目预选

在项目预选对话框中(在ZSoil 主界面中选择 File/New 时,会自动出现), Version type 选择 Advanced, Analysis type 选择 Axisymmetry, Problem type 选择 Deformation,这样就可以进行单相轴对称承载力分析。

Preselections	×	
Version type	Advanced 💌 📀	
Analysis type Problem type	Ausymmetry Deformation	
Project presele Frames on Dynamics Show mea Show all o C Show all o	Inction by Structures only Pushover iningful options only otions (meaningful options in black, other in gray color) otions (all in black color)	
Project title	Zsoil example	
Model description		
Author	ZACE	
Company	ZACE	
Unit system	My Units Show	
	OK Cancel	

• 驱动器

选择 Control/drivers 来设置驱动列表。Driver 选择 Time dependent, Type 选择 Driven load,指定初始时间值、结束时间值、初始时间步、时间 步乘子。本示例计算将从时间(FS)等于1天开始(这里时间只是一个虚 拟参数),然后下一个时间步为2、3...,直到发生发散(检测到失稳)或 者到达了 30 天。当乘子等于1时,时间步保持为常数,即 $\Delta t = 1.0$ 。

		Dri	vers definition														×
		П	Driver	Type	Time start Time e			Time en	d	Increment			Multiplier Nonl. solver settings			Dyn. anal. settings	
			Time Dependent	Driven Load	0 [day]		30	30 [day]		1	1 [day]		1	Default 12.07			
Pr	oject properties									-							
	Settings				A												
	Version type		Advance	b	_												
	Units		STAND	ARD													
			kN-m-d	legdayC													
	Analysis and probl	lem	type														
	Analysis type		Axisymn	netry													
	Problem type		Deforma	tion													
	Project description	n															
	Project title		Zsoil exa	ample													
	Model description																
	Author		ZACE														
	Company		ZACE														
	Associated prepro	oces	ssed projects														
	Heat project																
	Humidity project																
	Free field motion proje	ect															
	Large displacement	nts/	rotations/strains														
	Large displacements	/rota	ations False														
	Update coordinates d	durin	g const False		-												
		4	Advanced	Stage construction algo	rithm ettings]								ОК	Cance	⊔_ ⊢	ielp

学习如何设置驱动器列表,观看视频设置驱动器。

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

• 材料

本示例中有两种材料,第一种是地基土,第二种是混凝土基础。全部 参数见下表。

材料	模型	数据组	属性	单位	值
		础州	Е	$[kN/m^2]$	30000
		押任	υ	-	0.3
		重度	Y	[kN/m ³]	0
1 上目	Dunakan Duagan		φ	[°]	25
1 土层	Diuckei-Flager		ψ	[°]	0
		非线性	С	[kN/m ²]	15
			Adjustment	-	Intermediate
			cut off	-	OFF
		动业	Е	$[kN/m^2]$	30000000
2 混凝土	弹性	开任	υ	_	0.2
		重度	V V	[kN/m ³]	0

要编辑材质属性,请使用 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

• 加载函数

ZSoil[®]的加载函数用来描述变化(实时、真实或虚构),如应用荷载、强制位移、压力、温度、湿度和开挖后的逐步卸荷。示例中竖向里的发展是由荷载时间函数编号1驱动的,标记为竖向荷载,并在下图中详细说明。

要编辑加载时间功能,请使用菜单 Assembly/ Load function。

了解如何进入荷载时间函数观看视频编辑荷载时间函数。

• 所有数据准备步骤的总结(视频格式)

- 1. 创建一个新项目
- 2. 创建宏模型/网格/荷载/边界条件
- 3. 编辑材料
- 4. 设置驱动器
- 5. 编辑荷载时间函数
- 6. 运行计算
- 7. 可视化结果

1.3 如何求解固结问题

- •数据文件: CONSP2D.INP
- ・问题描述

由于荷载增加,水从细粒土孔隙中挤出,导致地面压缩的过程称为 "初始固结",对应的沉降称为"主固结沉降"。初始固结结束后,土壤 压缩和其他相关沉降继续以非常缓慢的速度进行,由于粘土颗粒及其粒子 连接的逐步断裂,土壤颗粒的塑性发生改变。这种现象称为"二次压缩或 蠕变",对应的沉降称为"二次沉降"。

ZSoil[®]使用一种多相算法模拟这两种过程,用户手册的"理论部分" 描述了这种算法。该算法遵循土力学中的传统方法,但开发了一些新的数 值工具准确模拟这些自然过程。该示例中使用对称地基模型来强调固结问 题的基本特征,如下图所示。

固结分析只能在变形+流动模式下进行,可在初始预选对话框中或稍 后通过菜单 Control/Project Preselection 进行设置。

·项目预选

在项目预选对话框中选择 Axisymmetry 和 Deformation+Flow。数据准 备和结果查看的单位体系可在 Control/Units 下修改。

reselections		×	
Version type	Advanced	0	
Analysis type Problem type	Asisymmetry V Deformation + Flow V	0	
Project prese Frames o Dynamic Show me Show all C Show all	ection my Structures only i Pushover aningful options only pptions (meaningful options in black, other in gray color) pptions (in black color)	0	
Project title	Zsoil example		
Model description			
Author	ZACE		
Company	ZACE		
Unit system	STANDARD Show	0	
	OK	Cancel	

・驱动器

我们需要设置两个驱动来解决固结问题,见下图。

Driver		Turne	Time eta		Time en			Increment		Multipliar	Noni soher	rattinge	Den anal cetting
- Criver		type	Time sta		Time en	-		Incement	-	ividiciplier	Norm. Solver	secongs	Dyn. anal. setting
Initial S	State		0.5		1		0.1				Default		
Time D	ependent	Consolidation	0	[day]	100	[day]	0.1	-	[day]	1.05	Default		
roject properties									-				
Settings				24									
Version type	Basic		-										
Units	STANDA	RD											
	kN-m-de	g-day-C											
Analysis and problem type													
Analysis type	Axisymme	atry	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
Problem type	Deformati	on + Flow											
Project description													
Project title	Zsoil exan	nple											
Model description													
Author	ZACE												
Company	ZACE												
Associated preprocessed pr	ojects												
Heat project													
Humidity project													
Free field motion project			11 A 11										
Large displacements/rotation	ns/strains												
Large displacements/rotations	Falso												
	Folco		-										

驱动 Initial 是为了设置流体压力和 t=0 时刻有效地应力的初始条件。 在 Deformation+Flow 模式下的驱动会执行两个计算步骤:

- 稳态流流动分析,在时间 t=0 时产生区域内的压力分布(对于渗透 边界处,假定孔隙水压力边界条件(p=0)。

- 从稳态获得的压力场进行标准初始状态计算。

此设置相当于非耦合总应力分析。第二个驱动可激活完全耦合固结分析,根据荷载时间函数来变化的竖向荷载密度,之后会定义。

027-59764518

学习如何设置驱动器表,观看视频设置驱动。

• 材料

固结土的材料属性见下表。

材料	模型	数据组	属性	单位	值
		础州	Е	$[kN/m^2]$	30000
		拜住	υ	_	0.3
		重度	Y_D	[kN/m ³]	16.52
1 1 1 1	古石 庄人		Y^F	[kN/m ³]	10
1 土层	吴小-件化		e_{o}	-	0.60
			φ	[°]	25
		非线性	ψ	[°]	0
			С	$[kN/m^2]$	5
			β^F	$[kN/m^2]$	10 ³⁸
			k_x^{I}	[m/d]	10^{-4}
		渗流	k_y^{I}	[m/d]	10^{-4}
			а	[1/m]	1
			S_r	-	0.0
		ri n situ o	$K_o^{x^t}$	_	0.6
		Katshu o	$K_{o}^{z^{t}}$	-	0.6

在示例中假设的流体边界条件形成了完全饱和状态的介质。因此,参 数 α 和 S_r, 需要部分饱和介质, 在这里是无意义的。通过假定 $k'_x = k'_v$, 就满足了各项同性达西渗流条件, $\beta^{F} = 10^{38}$ 即可等价于完全不可压缩流体 的条件。

要编辑材质属性,请使用 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

• 加载函数

2020.4.24

www.utum.cn

荷载时间函数展示了荷载随时间的变化。在初始状态(t=0)时,必须 为 0, 然后增加到结束值。本示例中垂直荷载时间函数见下图。

念优十优本

要编辑荷载时间函数,请使用菜单 Assembly/ load 功能。.

了解如何进入荷载时间函数,请观看视频编辑荷载时间函数。

• 模型的生成

计算模型是在以下步骤中建立的,并以视频的形式记录下来。

- 1. 创建一个新项目
- 2. 编辑加载时间功能
- 3. 创建宏模型/网格/负载和边界条件
- 4. 编辑材料
- 5. 设置驱动器
- 6. 运行计算
- 7. 可视化的结果

1.4 求解桩板墙问题

- 数据文件: tutorials/sheet-pile-wall.INP
- 描述

本示例模拟了复杂岩土模型中安装锚杆板桩墙,然后进行基坑开挖。 模型的几何模型会随着时间改变,如墙、锚杆、开挖土层会根据假设情况 出现或消失。模型的几何模型见下图:

• 项目预选

在预选框中选择 Plane strain、Deformation。预定义的单位体系可以在 Control/Units 中修改。

reselections	×	
Version type	Basic	
Analysis type Problem type	Plane Strain	
Project prese	ection T Structures only	
C Show me Show all of C Show all of C Show all of C	aningful options only uptions (meaningful options in black, other in gray color) uptions (all in black color)	
Project title	Zsoil example	
Model description		
Author	ZACE	
Company	ZACE	
Unit system	STANDARD Show	
	OK Calicer	

• 驱动器

整个计算过程包括三个驱动,即Initial(形成初始应力场分布,包括用 户定义的黏土层的原位侧向土压力系数 K0=0.8)、Time dependent/Driven load(分析分析全部施工和开挖步骤)、Stability(用 c-tan(φ)强度折减法 评估全局安全系数)。驱动的完整设置见下图。

		Drivers definition						11								
			Driver	Туре		Ini. Ioa	d factor	Fi	n. load factor	Increment		Multiplier	Nonl. solver settings		Dyn. anal. settings	
			Initial State		0.5			1		0.1			Default			
			Time Dependent	Driven Load	0		[day	6	[day]	1	[day]	1	Default			
			Stability	tg(phi)-c	1.05	7		2		0.05			Default			
Proj	ect propertie	es	1	1		Ľ										
•	Settings															
١	Version type			Basic		_										
	Units			STANDARD												
				kNmdegdayC												
Ξ,	Analysis an	nd p	roblem type													
	Analysis type	•		Plane Strain												
1	Problem type	•		Deformation												
- 1	Project des	crip	otion													
1	Project title			Zsoil example												
	Model descri	iptio	n													
	Author			ZACE												
•	Company			ZACE												
Ξ,	Associated	pre	processed proj	ects												
	-leat project															
	Humidity proj	ect														
	Free field mot	tion	project			_										
	Large displ	ace	ments/rotations/	strains												
l	arge displac	cem	ents/rotations	False												
	Jpdate coord	dina	tes during const	False		-										
		Г	Advanced										ОК	Cance	I He	əlp

学习如何设置驱动器列表,观看视频设置驱动器。

• 材料

材料	模型	数据组	属性	单元	值
		磁州	Е	$[kN/m^2]$	30000
		开住	υ	-	0.32
			V_D	[kN/m ³]	18
		重度	Y^F	[kN/m ³]	10
			e_o	-	0.0
1 粘土	草尔-库仑		arphi	[°]	20
I 1µ		非线性	Ψ	[°]	0
			С	[kN/m ²]	15
			K_{ox}^{I}	—	0.8
		初始 K ₀ 状态	K_{oz}^{I}	-	0.8
			倾角	<u> </u>	0.0
		山を	Е	[kN/m ²]	60000
		拜住	υ	_	0.25
			Y _D	[kN/m ³]	17.5
	莫尔-库仑	重度	V^F	[kN/m ³]	10
			eo	-	0.0
7 砂		非线性	φ	[°]	30
2 4			ψ	[°]	0
			С	[kN/m ²]	0.0
			K_{ox}^{I}	_	0.5
		初始 Ko 状态	K_{oz}^{I}	_	0.5
			倾角	_	0.0
		弹性	E	[kN/m ²]	210000000
		JT II	υ	-	0.2
		重度	Unit weight	[kN/m ³]	0.0
2 址	油州源		Туре	_	Values
5 垣	并任来		Interval	[m]	1.0
		几何	I_z	[m ⁴]	11352 · 10-8
			A_x	[m ²]	2462 · 10 ⁻⁴
			A_y	[m ²]	2462 · 10 ⁻⁴
		弹性	E	[kN/m ²]	30000000
4	桁如	重度	Unit weight	[kN/m ³]	0.0
〒 1田 / 1	111 2	几. 何	Interval	[m]	4.0
		∑ ⊓ [.1	Area	[m ²]	0.000829
			arphi	[°]	inherit*
5 接触面	接触	非线性	ψ	[°]	0
			С	[kN/m ²]	0.0

界面的摩擦角满足条件: $tan(\phi^{interface}) = 0.5 tan(\phi^{soil})$ 。在本示例中, 初始孔隙比和流体比重无意义。

要编辑材质属性,请使用 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

念优十优本

• 存在函数

接触单元的引入会导致沿界面的网格连接中断。因此,在安装板桩墙 之前,必须保留界面的位移场完全兼容性。这种效果很容易达到,在生产 界面单元的过程中,定义接触为双模(首先是完全连续,然后是真实的界 面行为)。两种模式由两种存在函数控制(本示例中,存在函数7控制着 连续,函数6控制真实的接触行为)。强烈建议每个存在函数使用不同的 标签(label)。

要编辑存在函数,请使用 Assembly/ Existence 菜单。

了解如何输入存在函数,观看视频编辑存在函数。

• 模型的生成

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 创建一个新项目
- 2. 编辑材料
- 3. 编辑存在函数
- 4. 编辑施工线
- 5. 生成宏-模型
- 6. 设置驱动器
- 7. 运行计算
- 8. 可视化结果

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

1.5 如何求解稳态流问题

- Data file: tutorials/ssf.INP
- ・描述

虑如下所示堤坝,堤坝的流动条件:沿边界 AB 施加静水压力,通过 指定压力水头值 h(t)定义,在 DE 部分存在趾沟。我们会在单程分析两种 稳定状态方案,h(t=0)=3m 和 h(t=1d)=2m。通过水头 h(t)定义的随时间变化 的压力边界条件和趾沟需要通过所谓的渗透单元特色处理。这些单元允许 在压力和流量边界条件之间自动切换(在 AB 边界,地下水位以下,我们 需要设置压力边界条件,当流量在0以上时假定静水压力剖面,在趾沟部 分,水流向排水沟,在剩余部分0流量时,强制执行0压力)。

・驱动器

整个计算过程包括两个驱动, Initial 状态和 Time dependent/Steady 状态。第一个驱动会在 t=0 时的压力边界条件产生稳定态方案, 第二个会在 t=1d 再次生成稳定态方案。

Drivers defin	ition											X
Driver	Type	Ini. load f	actor	Fin. load factor Increment Multiplier		Nonl. solver settings		Dyn. anal. settin				
Initial Stat	e	0.5		1		0.1			Default			
Time Dep	endent Steady State	0	[day]	1	[day]	1	[day]	1	Default			
Project properties												
Settings		A										
Version type	Basic											
Units	STANDARD											
	kNmdegdayC											
Analysis and problem type												
Analysis type	Plane Strain											
Problem type	Flow											
Project description												
Project title	Zsoil example											
Model description												
Author	ZACE											
Company	ZACE											
Associated preprocessed p	rojects											
Heatproject												
Humidity project												
Free field motion project		_										
Large displacements/rotation	ns/strains											
Large displacements/rotations	False									-		_
Update coordinates during const	L. False	<u> </u>										
T Advanced	ı	-					\mathbf{v}		ОКС	ancel	Help	p

学习如何设置驱动器列表,观看视频设置驱动器。

• 材料

- 1										
	材料	模型	数据组	属性	单位	值				
				Y_D	[kN/m ³]	0				
		57	重度	Y^F	[kN/m ³]	10				
		11		e_o	-	0.0				
		弹性	弹性 渗流	β^{F}	[kN/m ³]	10 ³⁸				
	1 土层			k_x^t	[m/d]	10^{-4}				
				k_y^t	[m/d]	10^{-4}				
				β	[°]	0.0				
				а	$[m^{-1}]$	5.0				
				S_r	_	0.0				

土壤的材料属性如下表所示:

本示例中可使用任何实体材料模型,只有 Density 和 Flow 组中的参数 有意义。初始孔隙比 e^0 和流体体积模量 β^F 对稳态分析没有意义。当 $k_x^t = k_y^t$ 时,流动正交各向异性角 β 也没有意义。应用于渗流表面单元中的 虚构材料在这里没有指定(自动估计惩罚参数乘子等于默认值 1)。

要编辑材质属性,请使用 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

• 荷载时间函数

与边界条件的压力水头相关的荷载时间函数演变如下图:

Load functions	
Function definition	7
Number 1 Name h=ho*f(t) = 1m * f(t)	
Add Modify Delete Copy	3.4
Acceleration time histories toolbox	32
Insert expression	30
Function 1: h=ho*f(f) = 1m * f(f)	26
Shift origin	24
by value 🔽 0 [day]	22
For initial material	= 20
For first replacement material	<u><u>9</u> 1.8</u>
Por second replacement material	° 1.6
Scale values by lactor	1.4
Time [day] Value	12
0 3	1.0
1 2	0.8
	0.6
	0.4
	0.2
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
l l	Import Export Help OK Cancel

学习如何输入材料数据观看视频编辑荷载时间函数。

• 生成模型

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 下创建一个新项目命名为:ssf.inp
- 2. 设置驱动器
- 3. 编辑荷载时间函数
- 4. 编辑材料
- 5. 创建宏-模型和网格
- 6. 运行计算
- 7. 可视化的结果

1.6 如何在城市环境中模拟隧道

- Data file: tutorials/tunnelzh.INP
- ・描述

2020.4.24

www.utum.cn

ZSoil[®]-3D-2PSHASE v.2020

本示例探讨了城市环境中的隧道问题。工程草图如下图所示。

创建一个外半径 6.05m 的隧道,先挖一个小技术隧道(外半径 2.4m) 和混凝土衬砌(厚 0.2m)。然后冰冻围绕主隧道的整个区域(半径 7.25m),开挖主隧道,安装衬砌(厚 0.7m)。一旦衬砌设置好,就解 冻。

带有全部尺寸的几何模型见下图:

事件的顺序见下表:

必须强调的是由于开挖面的影响,这一问题是三维的。本示例中,我 们将此考虑了进来,假设开挖后只有部分应力消散(小隧道为 30%,主隧

						Time	e [d]				
		0	1	2	3	4	5	6	7	8	无限
1	小型隧道区开挖			4			1				
2	小型隧道区降水				~						
3	小型隧道衬砌布置										
4	主隧道冻结区										
5	主隧道主区间开挖				-						
6	主隧道主衬砌布置										
7	主隧道增加渗流面										

道为 20%),而其余部分则逐步施加到安装的衬砌上。只要考虑了冰冻影 响,我们假定刚度模量 E 从 E=40000kPa (原位值)增加到 E=150000kPa (这产生了一个因子 150000/40000=3.75),粘聚力从 c=1kPa 变化到 c=80kPa,内摩擦角从φ=38°到φ=45°。我们假设内摩擦角的残留值 (c=1kPa),以简化改参数随时间演化的数据设置。逐步卸载和材料参数 随时间的改变见下图:

		Time [d]									
	0	1	2	3	4	5	6	7	8	无限	
小隧道内外力的耗散		709	0%								
主隧道外力的耗散					80	0%					
冻结区B模量的放大				1.0	3.7	75	1.0				
冻结区粘聚力的放大				1.0	80	.0	1.0				
冻结区内摩擦角的放大				1.0	1.	18	1.0				

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

·项目预选

在项目预选框选择 Plane Strain 和 Deformation+flow

Preselections	X	ſ
Version type	Advanced	
Analysis type Problem type	Plane Strain	
Project prese Frames o Dynamic Show me Show all	ilection miy Structures only raningful options only options (meaningful options in black, other in grey color) options (dil in black color)	
Project title Model description	Zsoi example	
Author Company	ZACE	1
Unit system	STANDARD Show OK Cencel	

・存在函数

开挖和施工事件的顺序由以下存在函数确定。所有这些存在函数都是根据前面在描述中指定的事件序列定义的。

了解如何输入存在函数,观看视频编辑存在函数。

• 荷载时间函数

荷载时间函数涉及到开挖力的消散,也涉及到由于冰冻而引起的刚度 和强度参数随时间变化的描述。每个荷载时间函数都有各自独立的标签, 见下图:

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

LTF=2主隧道区域开挖应力耗散

E模量乘数在时间上的演化(由于冻结)

027-59764518

utum@utum.cn

LTF=5摩擦角-乘数在时间上的演变(由于冻结)

了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 材料

地基土和隧道衬砌的材料特性如下表所示:

材料	模型	数据组	属性	单位	值
		硝州	Е	[kN/m ²]	40000
		并住	υ	_	0.25
			V_D	[kN/m ³]	18
		重度	Y^F	[kN/m ³]	10
			e_{o}	-	0.32
	莫尔-库仑	渗流	$k_x = k_y$	[m/day]	0.0864
			S_r	-	0
1 地奉土			а	[1/m]	5
		非线性	arphi	[°]	38
			ψ	[°]	10
			С	[kN/m ²]	1
			k_{ox}^t	_	0.45
		初始 K ₀ 状态	k_{oz}^t	-	0.45
			倾角	_	0.0

武汉优土优木科技有限公司

		^强 州	E	$[kN/m^2]$	40000
		奸任	υ	-	0.25
			Y_D	[kN/m ³]	18
		重度	Y^F	[kN/m ³]	10
			e_o	_	0.32
2 地基土	莫尔-库仑		arphi	[°]	38
		非线性	ψ	[°]	10
			С	$[kN/m^2]$	1
			k_{ox}^t	-	0.45
		初始 K ₀ 状态	k_{oz}^t	-	0.45
			倾角	-	0.0
		研究	Е	[kN/m ²]	25000000
		押任	υ	-	0.2
	弹性梁	重度	容重	[kN/m ³]	24.0
3 小隧道			形式	-	用户定义 (矩形)
		几何形状	间距	[m]	1.0
			b	[m]	1.0
			h	[m]	0.2
		岡山	Е	[kN/m ²]	3000000
		评性	υ	-	0.2
	弹性梁	重度	容重	[kN/m ³]	24.0
4 主隧道			形式	_	用户定义 (矩形)
		几何形状	间距	[m]	1.0
			b	[m]	1.0
			h	[m]	0.7
		禅 州	Е	[kN/m ²]	3000000
	OI	H II	υ	-	0.2
	VC.	重度	容重	[kN/m ³]	0.0
5 基础	弹性梁		形式	-	用户定义 (矩形)
		几何形状	间距	[m]	1.0
			b	[m]	1.0
			h	[m]	1.0

需要注意的是材料2和材料1是一样的,但是材料2的刚度和强度参数会随着时间变化来模拟冰冻过程。

在这里没有定义用于渗流表面单元的虚拟材料 6(自动估计惩罚参数 乘子等于默认值1)

要编辑材质属性,请使 Assembly/Materials 菜单。

要了解如何输入材料数据,请观看视频编辑材料。

•随时间变化的材料属性

可以在编辑材料数据的时候设置随时间变化的材料属性。任何荷载时间函数(除了有意义的值)都能和任何(如果允许)材料参数联系起来。 要对选定的材料参数应用荷载时间函数,请从组合框数据模式中选择一个 荷载时间函数选项(总是放置在材料数据对话框的底部)。在荷载时间函数 模式下,可按下 Set(设置)按钮,从已定义的荷载时间函数列表中选择 荷载时间函数。也可以直接输入荷载时间函数的 ID(当它不存在时,会自 动创建并添加为零值函数添加到荷载时间函数列表中)。

要了解如何定义随时间变化的材料属性,请观看视频定义随时间变化的材料属性。

• 生成模型

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 创建一个新项目命名为: tunnelzh.inp
- 2. 编辑荷载时间函数
- 3. 编辑存在函数
- 4. 编辑材料
- 5. 创建施工线
- 6. 绘制模型骨架
- 7. 创建宏-模型和网格
- 8. 设置驱动器
- 9. 运行计算
- 10. 可视化的结果

1.7 热传导的力学分析

- 数据文件: tutorials/tunnelheat.INP, tutorials/tunnelmech.INP
- 描述

本示例展示了隧道衬砌外表面在外加温度时的热应力。工程草图如 下:

这个问题需要分两步进行分析。第一,我们将进行热分析,包括初始 状态计算(在热分析中,它相当于t=0时的稳态),然后是随时间变化的 温度 T1(t)、T2(t)、T3(t)驱动的瞬态分析。在隧道内部表面,我们假定对 流型的边界条件,由恒定的环境温度等于 20℃控制的。

热分析完成后,我们将进行力学分析,由热分析产生的温度场产生的 应变来驱动。这一复杂问题由两个独立的项目组成,先是热分析,然后是 力学分析。

注意:

1、热分析和力学分析中使用的网格可能完全不同,在几何意义上甚至可能覆盖不同的区域。在力学分析中使用的热解在网格上的投影将会自动由代码生成。

2、梁单元在热分析中无法使用。

3、梁单元在力学分析中可以使用(替换等效连续单元),但是仅限于分层版本(⊠Nonlinear设置为 ON)。

4、本示例中,热分析和力学分析的有限元模型将是唯一的。热分析 的典型特征,如对流边界条件、施加的温度,将在力学项目中自动忽略。 力学分析的典型特征,如唯一边界条件等,将在热分析中忽略。

• 项目预选

在预选框中选择 Plane stain 和 Heat。

Preselections		X
Version type	Advanced	0
Analysis type Problem type	Plane Strain	0
Project presel	lection nly Structures only s Pushover aningful options only options (meaningful options in black, other in gray color)	
Project title	Zsoil example	
Model description		
Author	ZACE	
Company	ZACE	
Unit system	Units 1 Show	
	OK	Cancel

• 荷载时间函数

和沿着边界 A-B、B-C、C-D 施加的温度边界条件相关的荷载时间函数如下图:

 $LT F_1(t) T_1(t) = 1$ °C 是的演变曲线 $LT F_1(t)$ $LT F_2(t)$ Evolution of $T_2(t) = 1$ °C $LT F_2(t)$

027-59764518

utum@utum.cn

*LT F*₃(*t*) *T*₃(*t*) = 1°C 时的演变曲线 *LT F*₃(*t*)

请注意,这些荷载时间函数仅对热分析有意义。 了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 材料

Γ

地基土、隧道衬砌、填土、接触面、对流面的材料属性见下表: 材料 模型 数据组 属性 单位 值

八王	xx //I -/II	洞江	712	臣
	超社	Е	$[kN/m^2]$	3000000
	并住	υ	—	0.2
		Y_D	[kN/m ³]	24
	重度	Y^F	[kN/m ³]	10
弹性		e_{o}	—	0.0
		$c^*=c\rho$	$[kJ/(m^3 K)]$	3000
	执	λ	[kJ/(m K h)]	8.64
	Μ.Υ	а	[1/°C]	10^{-5}
		Source	-	OFF
	硝灶	Е	[kN/m ²]	30000000
	TT I	υ	-	0.2
		YD	[kN/m ³]	24
	重度	Y^F	[kN/m ³]	10
弹性		e_o	-	0.0
		$c^* = c \rho$	[kJ/(m ³ K)]	3000
	Haat	λ	[kJ/(m K h)]	8.64
	neat	a	[1/°C]	10^{-5}
		Source	-	OFF
	硝州	E	[kN/m ²]	100000
	TIT	υ	_	0.3
		Y_D	[kN/m ³]	20
0	重度	Y^F	[kN/m ³]	10
莫尔-库仑		e_o	_	0.0
MA		φ	[°]	30
CA X	非线性	ψ	[°]	10
		С	[kN/m ²]	0
	初始 K。状态	K _{ox}	_	1.0
	弹性 弹性 莫尔-库仑	以工 秋441 弾性 重度 弾性 热 弾性 重度 弾性 重度 単生 目 単性 重度 単生 目 東水・海 単生 単生 日 単生 日 東皮 1 単生 1 東皮 1	放止 秋和星 八口 弾性 E 弾性 VD 重度 Y_{P}^{F} 虎 e_{o} 水 a 水 a 方 A 小 a 小 $c^* = c\rho$ 水 e_{o} 弾性 VD 重度 Y_{P}^{F} e_{o} $c^* = c\rho$ Heat a Source VD 運度 Y_{P}^{F} e_{o} YD 重度 YD 重度 YD 重度 YD ψ e_{o} ψ e_{o} ψ ψ ϕ ψ ϕ	放田 八田 112 弾性 E $[kN/m^2]$ 運度 γ_D $[kN/m^3]$ 重度 γ^F $[kN/m^3]$ e_o - 水 $[kN/m^3]$ e_o - e_o - χ^F $[kN/m^3]$ e_o - χ^F $[kN/m^3]$ k $[1/\circ C]$ Source - χ^F $[kN/m^3]$ χ^F $[kN/m^3]$ χ^F $[kN/m^3]$ χ^F $[kN/m^3]$ e_o - χ^F $[kN/m^3]$ χ^F $[kJ/(m^3 K)]$ A $[kJ/(m^3 K)]$ A $[kJ/(m^3 K)]$ A $[kJ/(m^3 K)]$ A $[kJ/(m^3 K)]$ μ e_o μ $[k/m^3]$ e_o - χ^F $[k/m^3]$ μ ψ μ

• 热分析、力学分析模型的生成

计算模型在以下步骤中建立,其中一些步骤以电影的形式记录下来。

- 1. 创建一个新项目命名为: tunnelheat.inp
- 2. 编辑荷载时间函数
- 3. 编辑材料
- 4. 创建骨架模型
- 5. 创建宏-模型
- 6. 创建网格

1.7.1 热分析

第1.7节详细描述了进行热分析和力学分析的计算模型。在本节中, 我们将定制模型,以运行热分析。唯一的修改为驱动程序列表的设置。

• 数据文件: tutorials/tunnelheat.INP

• 驱动器

之前在预选框中已经选择了热分析,现在只要正确设置驱动器即可。

本例中,我们需要跟踪由于瞬态边界条件引起的温度在空间和时间上的演变,因此必须设置初始条件。在运行瞬态分析之前,我们申明了一个

		Dr	ivers definition											X
		IC	Driver	Туре	Time sta	rt	Time en	d	Incremen	ıt	Multiplier	Noni. solver set	tings	Dyn. anal. settings
		IL	Initial State		0.5		1		0.1			Default		
		II.	Time Dependent	Transient	0	[day]	20	[day]	0.1	[day]	1	Default 13.03		
Proj	ect propert	ies	'											
8	Settings				A									
١	ersion type	•		Advanced										
L L	Jnits			STANDARD										
				kNmdegdayC										
	Analysis a	nd	problem type											
1	nalysis typ	е		Plane Strain										
F	roblem typ	е		Heat										
	Project de	sci	iption						A					
F	Project title			Zsoil example										
	Adel desc	ript	on											
1	uthor			ZACE										
(ompany			ZACE										
	Associate	d p	reprocessed proj	ects										
ł	leat project	t i												
ł	lumidity pro	ojec	t											
F	ree field m	otio	n project		_									
	arge disp.	ola	ements/rotations	/strains										
L L	arge displa	ace	ments/rotations	False										
l	Jpdate coo	rdir	ates during const	False			-	_						
-	_	Ē		- Stage construction algo	ithm									
					1									
		P	Advanced	Activate 5	mings							ОК	Cancel	Help

初始状态驱动,相当于t=0时求解的稳态热传导情况。所有节点温度边界 条件都是这样的,即t=0时的节点温度T=20℃,环境温度也是T=20℃。 因此,很明显,在t=0时,作为稳态分析的结果,我们必须在整个区域内 获得统一的温度T=20℃。注意:假设另一个初始条件,可以使用初始温 度超单元。

• 自定义模型以运行热分析

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 打开项目:tunnelheat.inp
- 2. 设置驱动器
- 3. 运行计算
- 4. 可视化的结果

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

1.7.2 力学分析(连续介质单元模拟隧道衬砌)

在这种情况下,隧道衬砌将借助特殊类型的连续体单元进行建模(具 有增强剪切和弯曲表示的 EAS 单元),该连续体单元属于结构连续体组。 当使用这些类型的单元时,唯一的限制是只能应用弹性模型。弯矩、剪力 和轴向力可以在后处理器中恢复。

以 tunnelheat.inp 名称准备的数据集必须以 tunnelmech.inp 名称保存 (不保存结果)。

• 数据文件: tutorials/tunnelmech.INP

• 项目预选

在项目预选框中将问题类型从 Heat 改为 Deformation, 注意,时间单 位不能改变(热分析中也要使用同样单位)。

• 驱动器

Dr	vers definition											X
Γ	Driver	Туре	Ini. load fa	ctor	Fin. load fa	ctor	Increme	nt	Multiplier	Nonl. solver se	ttings	Dyn. anal. settings
	Initial State		0.5		1		0.1			Default 13.03	_	
L	Time Dependent	Driven Load	0	[day]	20	[day]	0.1	[day]	1	Default 13.03		
I-												
L												
		Stage construction algo	prithm									
5	Advanced	Activate S	ettings						Г	ОК	Cancel	Help
1									i			

utum@utum.cn

之伏十伏木

为了将热解应用于力学模型,我们在 Associated preprocessed projects 对话框中点击浏览,导入 tunnelheat.inp 文件。

• 自定义步骤进行力学分析

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。 要了解如何从应力场中恢复集成的 M, N, T 图,请参见结果可视化视频。

- 1. 打开项目:tunnelheat.inp
- 2. 保存为:tunnelmech.inp
- 3. 设置驱动,附加热分析项目
- 4. 运行计算
- 5. 可视化的结果

1.7.3 力学分析(用梁来模拟隧道衬砌)

在这种情况下,隧道衬砌将借助梁单元进行建模。第一个要求是,为 了处理温度场的空间分布,必须使用分层梁模型(材料定义中的 ⊠Nonlinear 按钮需切换到 ON)。第二个要求是,关于主节点(偏移选 项),必须使用"梁偏移选项"来转移梁形心。在创建梁的过程中,可以 在宏观模型或 FE 模型层面进行此设置。关于热项目中使用的连续单元设 计的横截面(参见下图中的说明),设置偏移的目的是正确定位梁的横截 面。

• 材料

用分层梁定义的衬砌替换连续体衬砌需要对材料数据进行额外的修

改。我们必须添加一种新材料,编号7。

材料	模型	数据组	属性	单位	值
		动业	Е	$[kN/m^2]$	210000000
		并任	υ	_	0.2
		重度	容重	[kN/m ³]	0.0
			类型		用户定义
7 衬砌	弹性梁		间距	[m]	1.0
		口何形比	形状		矩形
		TURTEN	b	[m]	1.0
			h	[m]	0.4
			υ	_	0.2

utum@utum.cn

• 自定义步骤进行力学分析

- 1. 打开项目:tunnelmech.inp
- 2. 另存为:tunnelmech-b.inp
- 3. 内衬(梁)添加新材料
- 4. 用梁代替连续统一体
- 5. 运行计算
- 6. 可视化的结果

1.8 基于区域折减法的土-结构动力相互作用

• 数据文件:

tutorials/dynamics/SOILCOLUMN.inp tutorials/dynamics/DRM-S-FF-SHL.inp tutorials/dynamics/FF-SHL.inp

描述

本示例考虑了混凝土柱-地基动力相互作用。为了减少计算工作量,将 使用 DRM 方法,因此计算模型将包括两个模型,背景模型和简化模型。 背景模型将建立为剪切层模型(是1D模型),使用四边形单元和周期性 实体边界条件离散,将自由度绑定在相对的垂直墙上。背景模型将会由施 加于基础上的谐波位移激发,周期 T=0.5s。

该简化问题(DRM)用两步解决。第一,我们将对剪切层进行瞬态动 力分析,该剪切层将由初始状态驱动组成,然后是瞬态动力驱动,由施加 于基底(30m深度处)的谐波u_x(t)驱动(FF-SHL.inp)。一旦剪切层项目 完成,我们会运行简化模型(DRM-S-FF-SHL.inp)包括柱的瞬态动力分 析,由背景模型计算的位移、速度和加速度驱动。为了比较缩小模型和全 尺寸模型的结果,还将生成一个额外的全尺寸模型(SOIL-COLUMN.inp)。

• 材料

对于地基土、混凝土柱和粘性阻尼器,所有例子中常见的材料特性总 结如下表:

材料	模型	数据组	属性	单位	值
		础州	Е	$[kN/m^2]$	192000
		开住	υ	—	0.2
1 地基土	弹性		V_D	$[kN/m^3]$	19.61
		重度	Y^F	[kN/m ³]	10
			e_o	—	0.0
		^益 州	Е	$[kN/m^2]$	20000000
		并住	υ	—	0.2
2 杜主	磁州	重度	Y	[kN/m ³]	24.52
2 11	开任		矩形断面	_	
		几何形状	b	[m]	1.0
			h	[m]	1.0
		础州	Е	[kN/m ²]	192000
		并住	υ	—	0.2
3 粘性阻尼器			V_D	[kN/m ³]	19.61
		重度	γ^F	[kN/m ³]	10
			eo	-	0.0

1.8.1 全尺寸模型

为了进行柱-地基相互作用的时程分析,在没有额外单元抵消刚性边界的波浪反射的情况下,必须生成大型计算模型。本例中,生成了3600m长的模型。在以2Hz频率进行激发的前5s内,可进行此类分析。下面将总结最终模型的所有主要步骤。

第一步:打开新项目
Preselections
Version type Basic
Analysis type Plane Strain Problem type Deformation
Project preselection
✓ Dynamics
 Show meaningful options only Show all options (meaningful options in black, other in gray color)
C Show all options (all in black color)
Project title Zsoil example
Model description
Author
Company ZACE
Unit system STANDARD Show 3
1. 选择平面应变
2. 勾选 Dynamics
3 点击 OK
1 立供呈友为 SOIL COLUMN inn
4. 人IT刀付刀 SOIL-COLUMIN.IIIP

Materials				X
Material definition				
Add	Modify Dele	ete		
List of defined materia	ls			
Name	Cont./Struct.type Ma	terial formulation	Elastic	Open
			Unit weights	Open
Add/update mater	nal			
Number 1	Name No name	e		
Continuum & struc	ture type : Material formulation	on :	Flow	Open
Continuum	_ Elastic	-	Creep	
	Import material from databa	se		
	Import material from Virtual Lab de	atabase	🔽 Initial Ko State	
Advanced		OK Cancel	Heat	
			Humidity	
				l P
			Damping	
			1	
Add selected ma	aterial to database	port materials from *.INP	1	
Add selected me Add selected me date	aterial to database	oort materials from *.INP t materials from Virtual Lab database		
Add selected me Add selected me date	aterial to database	port materials from *.INP t materials from Virtual Lab database		
Add selected me Add selected me date	aterial to database Important aterial to Virtual Lab Important ateriate aterial to Virtual Lab Important ateriate ateria	oort materials from *.INP t materials from Virtual Lab database	Help Cancel	ОК
Add selected ma Add selected ma data	aterial to database Imp aterial to Virtual Lab Impor abase Help for current m	bort materials from *.INP t materials from Virtual Lab database	Help Cancel	ОК
Add selected me Add selected me data	aterial to database Importaterial to Virtual Lab	bort materials from *.INP t materials from Virtual Lab database	Help Cancel	ОК
Add selected me Add selected me data ▼ Advanced	aterial to database Importate aterial to Virtual Lab base Help for current m 选择 Elastic 本校	oort materials from *.INP t materials from Virtual Lab database nodel	」 Help Cancel 为 1。	ОК
Add selected ma Add selected ma date ▼ Advanced 添加新材料, 添加新材料,	aterial to database Importaterial to Virtual Lab Thelp for current m 选择 Elastic 本林 选择 Beams,编	port materials from *.INP t materials from Virtual Lab database nodel 的模型,编号, 1号为 2。	」 Help Cancel 为 1。	ОК
Add selected me Add selected me date ✓ Advanced 添加新材料, 添加新材料, 根据本示例主	aterial to database aterial to Virtual Lab abase Help for current m 选择 Elastic 本林 选择 Beams,编 教程设 置两种材	port materials from *.INP t materials from Virtual Lab database nodel 内模型,编号 号为 2。 料的属性。	Help Cancel 为1。	ОК
Add selected ma Add selected ma data I Add selected ma data I Advanced I Advanced 添加新材料, 添加新材料, 根据本示例主	aterial to database Importaterial to Virtual Lab abase Help for current m 选择 Elastic 本林 选择 Beams,编 教程设置两种材	port materials from *.INP t materials from Virtual Lab database nodel	」 Help Cancel 为 1。	<u>ОК</u>
Add selected me Add selected me date ✓ Advanced ✓ Advanced 添加新材料, 添加新材料, 根据本示例主 意:如果你想	aterial to database aterial to Virtual Lab abase Help for current m 选择 Elastic 本林 选择 Beams,编 主教程设置两种材 了解更多关于如·	port materials from *.INP t materials from Virtual Lab database nodel nodel 内模型,编号, 号为 2。 料的属性。 何编辑材质属	」 Help <u>Cencel</u> 为1。	<u>ок</u> 奇观看视频

第三步: 创建荷载时间函数列表	
第二步: 创建向载时间函数列表	
1 1.64083e-009 1.01 0.125333 1.02 0.24869 1.03 0.368125 1.04 0.481754 1.05 0.587785 1.06 0.684547	Expression sin(12.56637062**) Time begin 1 Time end 6 Step 0.01 Angle O Deg OK @ Rad OK
 打开荷载时间函数对话框 添加新函数,编号1 通过表达式定义函数 角度选择Rad,时间输入1到 (周期等于0.5s,因此ω = 4 	6s, 表达式中输入sin(12.56637062*t) 4 π)。

♀ ☆ 休 上 休 本

第五步: 创建子域(在宏观模型层面)
View under welche des des des des des des des des des de
 通过 Macro model/Subdomain/2D continuum inside contour 创建连续子 域,选择闭合轮廓内的点。
 通过 Macro model/Subdomain/Update/Parameters 应用正确的材料(编号1)到连续子域。
 通过 Macro model/Subdomain/Beam 选择垂直线单元。 通过 Macro model/Subdomain/Update/Parameters 应用合适的材料(编号2)到梁子域。

盒.优土优木

第七步:通过复制 2D 子域创建整个连续体区域,然后创建真实网格(在
宏观模型层面)
Z Prep3D Z Prep3D File Show excavation/construction steps Data verification Show excavation/construction steps Data verification Settings Windows Assembly Undo Othor Edges/Faces set. Window Assembly Undo View Edges/Faces set. Othor Parameters Draw Meth Tools User 0 Window Assembly Undo View Edges/Faces set. Setting of the set of
Veibility Veibility SUBDOMAIN FE Model FE Model Meren Model
V kalke objects I tidden objects Wackbo Core © GOLM V Subdomains I objects © Cont. 20 © Perints © Cont. 20 © Perints © Beam © Lines Image: Contract of the second seco
Option in right menu
Display color for Initial material
Under Under international material in 2 control to international material Filed object wirefame (C) = faite in 2 control to international Sale factor 5 Aspect ratio VX in 2 control to international Image: material international Image: material international <
1. 通过 Macro model/Subdomain/Copy with translation,将选中的 2D 子域
问石迎复刑 J 火。
2. 通过 Macro model/Subdomain/Copy with translation, 将远中的 2D 于域 向左边复制 6 次。
3. 通过 Macro model/Subdomain/Outline/all, 选择全部区域, 通过 Macro
model/Subdomain/Mesh/Virtual→Real, 创建真实网格。

念优土优本

1. 通过 FE model/Boundary conditions/Solid BC/On node, 选择节点, 在 梁的底部固定旋转。

念优土优木

第九步:为底部边界创建边界条件(在有限元层面) Z_Prep3D File - Data v 🔳 SF Po 🗏 🐉 11 11 11 14 15 RB \square 🔎 🔍 👻 🗶 Position Mode Add # 8 8 8 8 N 🔍 Q 🖉 -Ortho View **₽ -** × Parameters T 0.00 -Unselect Lists all Split Tools Laver 0 e × .. Hidden obje... Load function 1: imposed Existence function Unloading funct CEdit...> N 🛛 l⊾ n× ed disple 💌 🛛 -FE ⊏ v× <Edit..> On node Ek In element n L AX (Edit...) -Cont.-2D Add BC Γ υγ <Edit..> -O <Edit..> ▼ 0 <Edit..> -🕝 Beam Onbox <Edit..> [Un]/Out Nodes E AY all between 2 Nodes between 4 Nodes Box with 2 Nodes In zoom box In zoom circle Inside contour 🗖 UZ (Edit...) <Edit..> • 0 <Edit..> Ŧ T VZ isplay color fo <Edit..> lide objects when p... False Show wireframe (CT... False emporary hiding of ... False T AZ <Edit..> ami Imporary hidi With load function With existence for With label ΠUX <Edit..> - 0 <Edit..> **v** 0 <Edit...> -1.0000 <Edit...> <Edit..> Ŧ L UA <Edit..> J 🛛 <Edit..> <Edit...> Delete <Edit..> Update... FE Model <Edit..> E AY arame Continuu Beam Solid BC <Edit..> m 2D 27000 🗖 UZ <Edit..> - 0 <Edit. Export selected BC Update BC from file 10 <Edit...: **□** ∨z <Edit..> 🗖 AZ Macro I Cancel 27 No nam 🗌 In local bas OK 38 12 Selected nodes at the base les (95/28826) info Mesh info 1. 选择 2D 区域底部边界的所有节点。 2. 通过 FE model/Boundary conditions/Solid BC/On node, 固定 UY 和 UX 的 dofs (自由度),此外,将沿x方向施加的位移振幅值设置为1.0,

并将其与荷载时间函数1关联。

utum@utum.cn

念优十优本

第十一步: 设置驱动器

Driver	Туре	Time	e start	Time en	.d	Increm	nent	Multiplier	Nonl. solver	settings	Dyn. anal. s	ettings
Initial State		1		1		0.1			Default]	
Dynamics	Driven Load	1	[s]	6	[s]	0.01	[s]	1	Default		Default	-

- 1. 添加初始状态驱动以生成地应力。
- 2. 从时间 1.6 s 添加瞬态动力学驱动以执行动态时程分析。注意:在主 菜单和 Assembly/Drivers 中都可设置驱动。

第十二步: 设置	置瞬态动态驱动
D	ynamics settings
5	Settings label
[Default 🖌 Add Delete
-1-	Element mass matrices Lumped Filtering masses Active Active X X Z Z
	In local base Define local base
C ¹	Rayleigh damping factors C = alpha0 * M + beta0 * K
	α ₀ 0 [1/s]
	β ₀ 0 [s]
	Evaluate damping coefficients from imposed values
	Algorithm
C	Implicit Newmark (displacement) Solid Fluid
•	α -0.3 α -0.3 HHT (displacement) β 0.4225 θ 1 γ 0.8 1 1
1	✓ Include inertial term in Darcy law
1	Advanced OK Cancel Help
1. 使用带有 Control/Dyn	默认积分系数的 HHT 积分方案(ZSoil [®] 主菜单 namics)。

1.8.2 背景模型

背景模型需要借助区域简化法进行时程分析。本示例中,我们将制作 一个简单的有一列 Q4 单元的剪切层模型,两个垂直墙上有周期性边界条 件。沿 x 轴的模型尺寸将等于 3600 米,尽管这足以使其与下一小节中描 述的 DRM 模型长度一样长。该简化模型将以与全尺寸模型相同的方式受 到频率为 2Hz 的谐波激发。为了进行柱-地基相互作用的时程分析,在没 有额外单元抵消刚性边界的波反射的情况下,必须生成大型计算模型。在 考虑的情况下,生成了 3600m 长的模型。在以 2Hz 频率进行的激励的前 5s,可进行此类分析。下面将总结最终模型的所有主要步骤。

Preselections	
Version type Basic	
Analysis type Plane Strain	
Problem type Deformation	
Project preselection	
Frames only Structures only	
C Show meaningful options only	
 Show all options (meaningful options in black, other in gray color) Show all options (all in black color) 	
Project title Zsoil example	
Model	
Author ZACE	
Company ZACE	
Unit system STANDARD Show	
OK Cancel	
2. 打工Upynamics	
5. 按文区些设直按按钮UK	
4. File/Save As SOIL-COLUMIN.Inp	

第三步: 绘制 CAD

- 1. 添加特征 X 坐标-1800, 0, 1800, Y 坐标 0, 30。
- 绘制矩形 3600m*30m。在这种情况下,由于模型的横纵比很大,建 议直接通过对话框输入顶点坐标,而不是绘制;请注意,该模型的水 平尺寸可以减小到简化模型的尺寸(100m),如下一小节所示。

注意: 域轮廓的绘制可以直接用鼠标绘制,也可以在对话框中设置端点的坐标;端点的坐标可以定义为绝对坐标,也可以定义为相对坐标(在本例中,在X,Y,Z坐标前放置@字符)。

第四步: 创建 2D 连续体子域

按照与全尺寸项目相同的方式,创建一个二维子域,进行 1×15 的虚拟 拆分(沿长度1个元素),然后将其转换为真实网格。

第五步:为底部边界创建边界条件(在有限元层面)

固定 UY 和 UX dofs;另外,将沿 x 方向施加的位移幅值设为 1.0,并将其 与荷载时间函数编号 1 相关联;使用 FE 模型/边界条件/固体边界条件/节 点选项来设置此设置;这个操作与全尺寸模型完全相同。

第六步:为左右竖直墙创建周期边界条件(在有限元层面)

生成周期边界条件 u_M = u_s(选项 FE 模型/边界)条件/周期边界条件)将所有 自由度捆绑在两个垂直边界上;这个操作与描述的全尺寸模型完全相 同。

1.8.3 DRM 简化模型

简化模型将由混凝土柱附近的一小部分底土以及已求解的相关背景模型组成。DRM 模型可以通过多种方式构建。两种可能的情况如下图所示。在本教程中,我们将使用第一种方案,因为它简单得多(两者实际上是等效的)。由于模型是对称的,我们可以用周期边界条件替换两个垂直网格墙上的标准水平固定件。然而,在更复杂的情况下,我们可能需要假设标准的箱型边界条件来求解初始状态,随后,当动态驱动被激活时,将不得不删除它们。因此,在所考虑的情况下,将首先使用箱型边界条件求解初始状态,然后释放水平固定件(但保持反作用力),并执行简化模型,从简化背景模型导入自由场运动。

情况 1:外部/边界层放置在底部和沿垂直墙壁

情况 2: 仅沿垂直壁面放置的外部/边界层

第一步:新建项目	
Preselections	
Version type Basic	
Analysis type Plane Strain	
Problem type Deformation	
Project preselection	
Frames only Structures only Dynamics Pushover	
C Show meaningful options only	
Show all options (meaningful options in black, other in gray color)	
Project title Zsoil example	
Model	
description	
Author ZACE	
Company ZACE	
Unit system STANDARD Show	
OK C	ancel
1. 选择平面应变	
2. 打开⊠Dynamics	
3. 接受这些设置按按钮 OK	
4. File/Save As DRM-S-FF-SHL.inp	

- 1. 通过 File/Import data from another *.inp file, 从全尺寸模型 SOIL-COLUMN.inp 中导入材料、动态设置。
- 2. 通过 assembly/Materials/Add material,为粘滞阻尼器添加新材料并设 立标志,勾选 Inherit properties from adjacent continuum,这样,每个 阻尼器将从相邻的连续单元继承其机械和流动特性。

utum@utum.cn

林田山、山井井山山コツ	-1-1-
第四步: 创建荷载时间函数	列表
Load functions	× •
Function definition	
	1.15
Add Modify Delete Copy	1.05
Acceleration time histories toolbox	1.00
Eurotion 2: BC unloading	0.90
- Shift origin	0.85
by value 🔽 1 [s]	0.75
For initial material	0.65
For second replacement material	10.00 0.055
Scale values by factor 1	0.50
Time [s] Value	0.45
0 1	0.35
100 1	0.30
	0.20
	0.10
	0.05
	0.05 0.00 0 10 20 30 40 50 60 70 80 90 100 t [s]
	0.05 0.00 0 10 20 30 40 50 60 70 80 90 100 t [s] Import Export Help OK Cancel
	0.05 0.00 0 10 20 30 40 50 60 70 80 90 100 t [s] Import Export Help OK Cancel
	0.05 0.00 0 10 20 30 40 50 60 70 80 90 100 t [s] Import Export Help OK Cancel
1. 通过 Assembly/Load fun	0.05 0.05 0.00
1. 通过 Assembly/Load fun 话框	0005 10 20 30 40 50 60 70 80 90 100 Import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对
 通过 Assembly/Load fun 话框。 	0005 10 20 30 40 50 60 70 80 90 100 Import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 	005 10 20 30 40 50 60 70 80 90 100 import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(⁰⁰⁵ / ₀₀₀ / ₀ / ₁₀ / ₂₀ / ₃₀ / ₄₀ / ₅₀ / ₆₀ / ₇₀ / ₈₀ / ₉₀ / ₁₀₀ / _{1(s)} mport Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对 扁移值 1.0。
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(4 编辑弦函数 设置2 (1) 	<u> </u>
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 	0000 10 20 30 40 50 80 70 80 90 100 Import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对 高移值 1.0。 点 LTF ₂ (t=0)=1,LTF ₂ (t=100)=1, 当运行动态驱
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 	000000000000000000000000000000000000
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 消散)。 	000000000000000000000000000000000000
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 消散)。 	0000 10 20 30 40 50 80 70 80 90 100 Import Export Help OK Cencel ctions 或者主界面 Load functions 打开编辑对 扁移值 1.0。 点 LTF ₂ (t=0)=1,LTF ₂ (t=100)=1, 当运行动态驱 直壁上水平反力的卸荷函数(反作用力不会
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 消散)。 	0000 10 20 30 40 50 80 70 80 90 100 Import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对 高移值 1.0。 点 LTF2(t=0)=1,LTF2(t=100)=1, 当运行动态驱 直壁上水平反力的卸荷函数(反作用力不会
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 消散)。 注意:如果你想了解更多关 	import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对 高移值 1.0。 点 LTF2(t=0)=1,LTF2(t=100)=1, 当运行动态驱 直壁上水平反力的卸荷函数(反作用力不会 手如何编辑荷载时间函数,观看视频编辑加
 通过 Assembly/Load fun 话框。 添加新函数,编号2。 假设此函数的时间原点(编辑该函数,设置3个, 动时,该功能将用作垂 消散)。 注意:如果你想了解更多关 载时间函数。 	10 20 30 40 50 60 70 80 90 100 Import Export Help OK Cancel ctions 或者主界面 Load functions 打开编辑对 扁移值 1.0。 点 LTF2(t=0)=1,LTF2(t=100)=1, 当运行动态驱 直壁上水平反力的卸荷函数(反作用力不会 手如何编辑荷载时间函数,观看视频编辑加

第	五步: 约	会制 C	AD										
File		×	[Z_Prep3D			🗖 Show ex	cavation/constructi	on steps	Data verification Settings ~ H
Windows	Assembly Undo Ortho	View XY 0.00	7 Q • X	Aode Add 🔹	Select Unselect I all T all T		Parameters	∷ <u>⊥</u> s ⊙ • & •	Split Tools	# 3 3 3 : Layer 0	3		
Visibility	Assembly Undo 4 × R •		Lages\Faces sel.	Global s	election tools		Param. 0.0	Draw .	Mesh Tools		¹ 50.0		FE Model
Visible ob MACRO	jects Hidden objects	50.0											Macro Model Deta super element Pushover control node
	Cher		£5 0 .0				0.0				50.0		Difencies
	Crid Crid											T ^{10m}	а. -
Display color Hide objects Show wirefran	r for: Initial material when p False me (CT False											30.0 .	
Temporary h Scale factor Aspect ratio	iding of False 5 Y/X 1.000000 ▼						5					a a	
Function FE Mode Macro N	ns and Materials lel Model											30m	
Points Lines	6											o	<i></i>
		. ↑ .	⊢				<u>100m</u>				4		<i>r</i>
											~		
		Output					₽×S	elected elements					# ×
Project p Undo data s	properties 5 Mesh info saved 0.00 s	-90.000 80.000 0	.000					-			<u> </u>		
									-	Ŷ			
1	构业劫	化	$t \mathbf{v}$	从标	添加	50	0	50	V	以标识	Etn () 20	40
1. ว	的迫抽	1:汉, / [形 10	圧Λ 0m*2	至小 20m	NF 714	-30,	0, .	50,	1 9	巴小人	клн (), 30,	40.
∠. 3	运 响 <i>凡</i>	- 10 - 古 任	v-($\int u$	11 30) 列 (10						
5.	法则坐	且以	, <u>л</u> -(J, y	// J) ±1 ¬	rU.						
第一	六步: 仓]建2	D 连	续体	子域								
1.	与创建	全尺	十项	E 21)子垣	成的方	7法木	目同	,设	· 置 虚	拟网	格 50>	×15(沿长
	边划分	- 50 个	单元						/	- - - - -		11 2 3	
2.	使用虚	拟网/	格 10	个,	创建	:梁子	域。						
		- 1/ ' ' 1		Š									

www.utum.cn

027-59764518

utum@utum.cn

念优土优木

在底部节点固定 UY 和 UX 自由度;请注意,在这种特定情况下,基座 上的节点属于外部域,因此对于刚性基座模型,所有这些点的相对运动 均为零(在外部域中,我们在计算期间寻求相对/残余运动)

念优土优木

- 1. 选择左边和右边墙的所有节点,除了基地的。
- 2. 生成边界条件 (FE model/Boundary Conditions/Solid BC) u_x=0,存在 函数为 1,卸载函数为 2;这样,在初始状态计算期间,水平固定将 处于活动状态,在动态分析期间,水平固定将处于非活动状态;通 过在运行动态驱动器之前保持静态平衡,卸荷函数有助于代替固 定。

第十三步: 设置驱动并插入运动项目自由场

 I. 创建和全尺寸同样的驱动列表

 2. 浏览背景模型的输入文件

- 数据文件: tutorials/NAIL2Da.inp
- 描述

本示例模拟了土钉支护垂直开挖。与一些简单的极限平衡方法相反, 有限元模型需要一个多步骤的开挖和土钉安装过程,以消除土钉中的假力 和潜在的数值发散问题。工程草图如下:

• 材料

地基土、混凝土面层、土钉和土钉界面的材料属性如下表:

材料	模型	数据组	属性	单位	值
		山州	Е	[lbf/ft ²]	2088650
		评性	υ	_	0.3
			V_D	[lbf/ft ³]	120
1 卅丰十	首尔_库众	重度	Y^F	[lbf/ft ³]	63.7
1 地坐上	天小一个亿		e_o	_	0.0
			С	[lbf/ft ²]	100
		非线性	arphi	[<i>o</i>]	32
			ψ	[<i>o</i>]	0
		初始状态 K	K _{ox}	-	0.5
			K _{oz}	-	0.5
		弹性	E	[lbf/ft ²]	417729000
2 而巨	泌		υ	-	0.2
2 四 /公	木	重度	Y	[lbf/ft ³]	0
			矩形	_	
		几何形状	b	[ft]	1.0
			h	[ft]	0.5

027-59764518

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020

www.utum.cn

快速帮助 数据准备 理论

念优土优本

			k_n mult.	_	0.1
3 接触面	土钉接触面	弹性	$k_t \atop { m mult.} k_n$	_	1.0
		非化州	直径 D	[ft]	0.333
		非线性	τ _{ult}	[lbf/ft ²]	7200
		山を	Е	[lbf/ft ²]	4177290000
		评性	υ	-	0.2
	泌	重度	Y	[lbf/ft ³]	0
4 工刊	米		匮		
		几何形状	直径	[ft]	0.083
			间距.	[ft]	5

第一步:新建项目
Preferences
Version type Basic
Analysis type Plane Strain
Problem type Deformation
Project preselection Frames only Structures only
Dynamics Pushover
 Show meaningful options only Show all options (meaningful options in black, other in gray color
Show all options (all in black color)
Project
Model
Author
Company
Unit system STANDARD Show
Language English OK Cancel
1. 选择平面应变
2. 同意这些设置按下按钮⊠OK
3. File/Save As NAIL2Da.inp

第	二步: 创建材料列表
	Materials
	Material definition
	Add Modify Delete Edit material in Virtual Lab
	List of defined materials
	Name Cont./Struct. type Material formulation Image: Cont./Struct. type Material formulation →1: subsoil Continuum Mohr-Coulomb
	Add/update material
	Number 1 Name subsoil Continuum & structure type : Material formulation : Image: Continuum & structure type : Open
	Continuum Victoria Continuum Victoria Continuum
	Import material from database
	Import material from Virtual Lab database
	Advanced OK Cancel Heat
	T Stability
	Add selected material to database Import materials from *.INP
	Add selected material to Virtual Lab Import materials from Virtual Lab database
1.	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模
1.	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模型。
1. 2.	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模型。 通过 Assembly/Materials 在主菜单中添加新材料(混凝土饰面)2 号梁。
1. 2. 3.	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模型。 通过 Assembly/Materials 在主菜单中添加新材料(混凝土饰面)2 号梁。 在主菜单中通过 Assembly/Materials 添加新材料(钉接口)3 好钉界面。
1. 2. 3. 4	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模型。 通过 Assembly/Materials 在主菜单中添加新材料(混凝土饰面)2 号梁。 在主菜单中通过 Assembly/Materials 添加新材料(钉接口)3 好钉界面。 在主菜单中通过 Assembly/Materials 添加新材料(钢钉)4 号梁
1. 2. 3. 4.	在主菜单中通过装配/材料添加新材料(底土)1 号采用莫尔-库仑本构模型。 通过 Assembly/Materials 在主菜单中添加新材料(混凝土饰面)2 号梁。 在主菜单中通过 Assembly/Materials 添加新材料(钉接口)3 好钉界面。 在主菜单中通过 Assembly/Materials 添加新材料(钢钉)4 号梁。 根据本教程主要部公由指定的教提沿罢所有材料的屋树

注意:如果你想了解更多关于如何编辑材质属性的内容,请观看视频编辑材质属性。

念优土优本

第1	四步:	为土钉利	面层	部分创	建存在函数	数		
Existe	ence function							×
	Number	Label	Activ	e period 1	Active period 2	Active perio	d 3	
	1	subsoil layer 1	0	1			u	
	2	subsoil layer 2	0	2				
	4	subsoil layer 3	0	3				
	5	subsoil layer 5	0	5				
	6	subsoil layer 6	0	6				
	7	subsoil layer 7	0	7		<u> </u>		
	11	nails layer	1	INF				
	Existen	e function defin	ition					×
	Ter	mplate EXF number		11				
	Up	date EXF label			Label	nails layer		_
	Sta	art 1-st EXF with num	nber	12				
	Inc	rement EXF counter	by	1				
	No	of generation steps		7				
					For time-1		For time-2	
	Tin	ne increment in peri	od - 1		1.000000		1.000000	
						46		
						C. / N		
							OK Ca	ncel
11 - 1	nails laver							
	0.0	1.0		2.0	3.0 4.0		6.0	7.0 8.0
				Expo	int Import	Automatic gen	eration Help	OK Cancel
1	打开	左在函数	对话	行				
1.	11/1 /	计工业外		E 1J -				
2.	添加	新函数 l	,标签	之:地	<u><u><u></u></u></u> <u></u> <u></u>			
3.	定义	该函数在	1-∞	时激活	,该函数后	前期会关	联到第一层	土钉
4.	点击	Automat	ic gen	eration	, 设置如上	图所示	-	
	//// 144		0				~	

第五步:	绘制 CAD					
0	40.0	00.0	120	100.0	200.0	240
0000000	40.0	80.0	120.0	160.0		0.000e+00
				2		-40 -4 DODe+01
		Rota	tion parameters		×	
		Cent X: [Y: [er of rotation 120 [ft] -2.5 [ft]		-	-8.000e+01
		Angl	e/Step		OK	
		Rotat	ion angle : -15	[deg]	Cancel	
1 15 1		100 0				
1. 添加	X 坐标 0,	120, 24	40, Y 坐衣	F-80, -40,	0.	
2. 绘制	矩形 240ft*	80ft。				
3. 绘制	线段(0, -	40)、	(240, -40))) (接受)	交叉点)。	
4. 绘制	线段(120,	-40)	(120,	0) (接受	交叉点)。	
5. 绘制	线段(120,	-2.5)	, (150,	-2.5) (不接受交叉	点)。
6. 围绕	点(120,	-2.5)	旋转最后	一条线段	((Macro r	model /Objects
/Upd	ate /Rotate)	,这条	线段后期	会生成第-	-层土钉。	5
注意: 域 的坐标;¤ 例中, 在		制可以I 可以定 标前放	直接用鼠标 义为绝对望 置@字符)。	绘制,也 坐标,也可	可以在对话 「以定义为材	框中设置端点 目对坐标(在本

▲前言 ▲▲二维问题

第	六步: 创建区域(在宏观模型层面)	
1		-
1.	远取闭合轮廓内的点,Macro model/Subdomain/2D continuum 在轮廓内 创建三个一始连续体子域	J
2	的建二丁二维迁续体了域。 使用 Macro model/Subdomain/Undate/Parameters 选项对连续体子域应	ī
2.	用合适的材料号(1)。	-
3.	通过选择垂直线段,在对象上通过 Macro model/Subdomain/Beam 方法	
	创建梁子域。	
4.	使用 Macro model/Subdomain/Update/Parameters 选项将合适的材料号	ī
	(2)应用到梁子域。	

027-59764518

utum@utum.cn

念优土优本

第八步: 创建土4	钉(在宏观模型层面)			
	Nail parameters	~	X	
	Beam director	Node 1	Node 2	
	X: 0.258819 X: 0.258819	X: 120 X:	148.977774	
	Y: 0.9659258 Y: 0.9659258 Z: -0 Z: -0	Y: -2.5 Y:	-10.264571	
		Z: 0 Z:	0	
	Create nail-soil interface			
	Nail head linking	Lii	nk	
	Parameters	4: nail		
	Nail-soil interface material : 3	3: interface		
	Existence function : 11	11: nails layer 1	~	
	Number of segments		-	
Î				
\longmapsto	Eliminate segments shorter than	[#]		
		ОК	Cancel	
			No. No. 11. 1	<u>्र</u> ि टन
1. 通过 Macro m	iodel/Nail/Create/On ol	bject(s)选甲	乙則的约	线段。 目别 大小工作
2. 通过 Macro 1	model//Nail/Update/Par	rameters 编: 応用社約 4	料土钉 /	禹 住 の 在 村 田 セ 和 田 セ 和 田 セ 和 田 セ 和 田 セ 和 の の ロ セ の の ロ セ の の の し の の の の の の の の の の の の の の の
中, 勾延 Cre	部的分配数为 6(为避	应用初杆4	到工订	闪印 <u>风</u> 尔杆 5 到 网 枚 应 与 田 于 抽
上 J 衣 山 。 10 其 十 的 网 枚 相		小小冰沕,	工刊印	内俗应可用了地
金工19777年1				
讨论:				
• 一旦生成真	实网格,必须在有限;	元模型层面	将土钉	头与面层连接起
来				
• z方向土钉之	之间的距离在材料数据	Interval bet	ween be	ams 选项中设置

utum@utum.cn

第ナ	步:复制土钉(在宏观模型层面)
	Copy with translation
Ĺ	Direction Normalized Step Total size One step size X: 0 0 Step size 5 [ft] Y: -1 -1 Number of steps 7 1
	Use normalized OK Cancel
1.	选择创建的土钉,通过 Macro model/Nail/Create/Copy with translation 复制 7 次,步长 5ft (不接受与现有图形对象的交占)
2.	通过 Macro model/Nail/Update/Parameters,应用对应的存在函数到每 层土钉。

1	Automatic modification of parameters
γ	 Modify selected parameter(s)
	Label Start numbering from function
	Existence Function : subsoil layers 1 1: subsoil layer 1
	Unloading Function : 0
	 Direction of modification
	Modify parameters along 🔷 edge 1-2 💿 edge 1-4
ř	For every 1 layers of elements in the selected direction
	Reverse direction
	 Modify selected parameter(s) for adjacent interface elements Label Start numbering from function
	Existence Existence V
	Unloading Function
	Addity selected parameter(s) for adjacent Seepage elements Label Start numbering from function
	Existence Function :
	 Modify selected parameter(s) for adjacent Convection elements Label Start numbering from function
	Existence Function :
	Unloading Function :
	Create Seepage elements on front faces of each excavation step
	Create Material: 0
	Label Start numbering from function
	Existence Function
	Create Convection elements on front faces of each excavation step
	Create Matarial 0
	Label Start numbering from function
	Existence Function :
	Unloading Function : 0
	Logd Function : 0
	Ambienttemperature 0
	OK Cancel
)*

- 1. 通过 Run method Macro model/Subdomain/Update/Define excavation front, 为后续开挖层设置存在函数。
- 2. 在开挖面对话框中,勾选存在函数,设置标签为地基土层,选择第一个已经定义的存在函数,如下图所示:
- 3. 上述设置将强制将存在函数 No.1 应用于实际网格中的第一个顶层单元, No.2 应用于第二个等等。

讨论

- 一旦生成真实网格,每个开挖土层的存在函数可以在有限元模型层面上建立。
- 每个开挖土层的存在函数也可以在宏观模型层面上设置,但在这种情况下,我们需要在考虑的区域中创建8个子域,而不是1个子域。

027-59764518

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn 快速帮助 数据准备 理论 基准测试

TU-88

1
Automatic modification of parameters
Modify selected parameter(s) Label Start numbering from function
Existence Function : facing layers 11 11: nails layer 1
Unloading Function :
Direction of modification
Modify parameters along edge 1-2
For every 1 layers of elements in the selected direction
Reverse direction
OK Cancel
1. 通过 Macro model/Subdomain/Update/Define excavation front,设置待施 工后续面层的存在函数
2. 在开挖面对话框中勾选 Existence function,设置土钉层,为编号 11 的 十钉选择第一个存在函数,如上图所示。
3. 上述设置将强制将存在函数 No.11 应用于实际网格中的第第一排面层 单元(梁)。
评论
 一旦生成真实网格,每个构造面层的存在函数可以在有限元模型层面上建立。
 每个构造面层的存在函数也可以在宏观模型层面上设置,但在这种情况下,我们需要在考虑的区域中创建8个子域,而不是1个子域。

027-59764518

utum@utum.cn

优十优木

第十三步:设置驱动

Driver	Туре	Ini. load	factor	Fin. load	factor	Increm	nent	Multiplier	Nonl. solver set	ttings	Dyn. anal. setting
Initial State		0.5000		1.0000		0.1000			Default 10.08		
Time Dependent	Driven Load	1.0000	[s]	9.0000	[s]	1.0000	[s]	1.0000	BFGS		
Stability	tg(phi)-c	1.0500		2.5000		0.0500			Default 10.08		
Advanced									OK	Cance	Help
Advanced									ОК	Cance	I Help

第二章 三维问题

- 2.1 混凝土箱型容器
- 2.2 混凝土坝的排水
- 2.3 加筋土桥台
- 2.4 桩加固的筏板基础

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

2.1 混凝土箱容器

- 数据文件: tutorials/box-container.INP
- 描述

这个例子涉及一个开挖建模,然后是一个建筑钢筋混凝土外壳容器。 模型几何尺寸如下图所示。由于相对于 XY 平面的对称性,所以本次仅

仅对模型的一半作为分析对象。

开挖完成后,先在左腔诱导水压力加载,然后在右腔诱导水压力加载,最后在容器外墙与开挖之间填充土。

• 项目预选

在项目预选对话框中(在 ZSoil 的主菜单选项 File/NEW 中会自动出现) 分析类型选择到◎3D,并从问题类型栏中选择"变形"。预定义的单元系 统用于数据准备和可视化结果可以在菜单控制/单元验证。

Preselections		X	
Version type	Basic	0	
Analysis type	3D 💌		
Problem type	Deformation		
Project prese	lection		
Frames of	nly Structures only		
Dynamic	s Pushover		
Show me	aningtul options only		
C Show all	options (all in black color)		
Project title	Zsoil example		
Model description			
Author	ZACE		
Company	ZACE		
Unit system	STANDARD Show		
	OK	Cancel	

• 驱动器

整个计算过程将由两个驱动程序组成,即初始状态和时间相关性/驱动 负载。第一个驱动程序将给出 t = 0 时刻的地应力状态,而第二个驱动程序 可以跟踪所有的挖掘/施工步骤,包括试加载。

Dr	ivers definition	-										×
	Driver	Туре	Ini. load fa	ctor	Fin. load	factor	Increm	nent	Multiplier	Nonl. solver	settings	Dyn. anal. settings
	Initial State		0.5000		1.0000		0.1000			Default		
	Time Dependent	Driven Load	0	[day]	7.0000	[day]	1.0000	[day]	1.0000	Default		
	<u> </u>											
•												
ľ												
Ľ	Advanced									ОК	Cance	Help

要了解如何设置驱动程序列表,请观看视频设置驱动程序。

• 存在函数

挖掘/建造事件的顺序由下图所示的存在函数控制。所有这些存在函数都是根据前面在问题描述中指定的事件序列定义的。

了解如何输入存在函数观看视频编辑存在函数。

• 荷载时间函数

与试验加载(定义为通过流体头部的压力)相关的荷载时间函数,首先在 左腔,然后在右腔,如下图所示。

LTF1(t) 左室压头的演化

LTF1(t) 右室压头的演化

了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 材料

地基土、混凝土容器、填料、接触界面的材料特性汇总如下表:

材料	模型	数据组	属性	单位	值
		进业	Е	[kN/m ²]	30000000
1 混凝土	弹性壳	评性	ν	_	0.2
		重度	γ	[kN/m ³]	24
		商州	Е	$[kN/m^2]$	60000
		开任	ν	-	0.32
			γD	[kN/m ³]	20
		重度	γ^{F}	[kN/m ³]	10
	++ 1 . 1 . 1		eo		0.0
2 地基土	臭尔-库仑		φ	[°]	20
		非线性	ψ	[°]	0
			С	$[kN/m^2]$	15
		扫松华太 V	Kox	-	0.7
		起宛扒芯 Ao	K _{oz}	1	0.7
		磁州	Е	$[kN/m^2]$	60000
		件住	ν	_	0.32
			γD	[kN/m ³]	20
0 法卡州	并有许人	重度	$\gamma^{\rm F}$	[kN/m ³]	10
3 填允物	吴尔库仑		eo	=	0.0
			φ	[°]	20
		非线性	ψ	[°]	0
			C	$[kN/m^2]$	15
			φ	[°]	5
4 界面	接触	非线性	ψ	[°]	0
			С	$[kN/m^2]$	0.0

027-59764518

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn 快速帮助 数据准备 理论 基准测试 TU-99

注意:假设混凝土容器的厚度为 0.2m,在预处理器中定义。

• 回填建模过程

在这个例子中,应用了一个最简单的填充模型。这个过程在这里以 单时间步进行建模。在实际应用中,建议在几个步骤中完成,并在新建 层中同时施加初始应力。这样我们可以模拟任何回填技艺。为了避免在 宏观模型中生成多个填充层,可以将其设置在 FE 模型级别。

• 模型的生成

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 创建一个新项目命名为:box-container.inp下
- 2. 编辑存在函数
- 3. 编辑荷载时间函数
- 4. 编辑材料
- 5. 编辑驱动器
- 6. 创建宏观模型
- 7. 创建虚拟网格
- 8. 创建负载
- 9. 创建真实的网格和边界条件
- 10. 运行计算
- 11. 可视化的结果

念优十优本

2.2 排水混凝土坝

- 数据文件: tutorials/drain.INP
- 描述

本教程将考虑混凝土坝的三维瞬态流动分析。大坝由等距垂直孔(r =0.1m)排水。考虑到系统的周期性,以厚度等于排水管间距一半的代表 性管段为例,建立了计算模型。上游水位根据假定的负荷时间函数变

化。工程草图如下图所示。

得出下列结果:

- 压力场(特别是自由表面演化)
- 速度场
- 透过排水及下游面流出的时间历程,以评估系统的效率

• 项目预选

在项目预选对话框中(在 ZSoil 的主菜单选项 File/NEW 中会自动出现)分析类型选择◎3D,并从问题类型列表中选择 Flow 项目。预定义的系统的单位,无论是数据准备和可视化的结果,可以在 menu Control/Units 中确认。

Preferences		
Version type	Basic	
Analysis type	3D 🔹	
Problem type	Flow	
Project presel	ection	
Frames o	nly Structures only	
Dynamics	Pushover 🕑	
💿 Show mea	aningful options only	
Show all c	ptions (meaningful options in black, other in gray color	
C Show all c	options (all in black color)	
Project		
Model		
Author		
Company		
Unit system	STANDARD Show	
Language	English OK Cancel	
		5

• 驱动器

整个计算过程将由两个驱动程序组成,即初始状态和时间相关/瞬态。拳头驱动程序的初始条件将产生孔隙压力在时间 t = 0(流问题的初始状态相当于稳态解在时间 t = 0),第二个司机需要跟踪的进化压力和速度场由于变压边界条件应用于上游坝面。

Driver Type Ini. load factor Fin. load factor Increment Multiplier Nonl. solver settings Dyn. anal. settings Time Dependent Transient 0 (day) 100 (day) 2 (day) 1 Defuil 12.08		Drivers delin	iuon														
Image: State 0.5 1 0.1 Default 12.08 _		Driver	Туре	7	Ini. load fa	ctor	Fin. load fa	ctor	Incremen	nt	Multiplier	Nonl. solver set	tings	Dyn. anal. sett	tings		
Ime Dependent Transient 0 (idy) 100 (idy) 2 (idy) 1 Default 12.08 -		Initial Stat	te		0.5		1		0.1			Default 12.08					
Image Dependent Transient 100 (day) 200 (day) 2 (day) 1 Default 12:08		Time Dep	endent Transi	ent	0	[day]	100	[day]	2	[day]	1	Default 12.08					
Ime Dependent Transient 200 (day) 2 (day) 1 Default 12.08		Time Dep	endent Transi	ent	100	[day]	200	[day]	5	[day]	1	Default 12.08	- 1				
Time Dependent Transient 220 (day) 2 (day) 1 Default 12:08		Time Dep	endent Transi	ent	200	[day]	220	[day]	2	[day]	1	Default 12.08	-1				
Time Dependent Transient 300 (day) 5 (day) 1 Default 12.08 -		Time Dep	endent Transi	ent	220	[day]	300	[day]	2	[day]	1	Default 12.08			-		
Settings • <		Time Dep	endent Transi	ent	300	[day]	400	[dav]	5	[dav]	1	Default 12.08					
Settings Set									-	//	-		-		-		
Settings Se	roject pr	operties															
Version type Basic Units STANDARD Analysis and problem type Analysis and problem type Analysis and problem type Analysis and problem type Forblem type Flow Project tidescription Project tidescription Author ZACE Company ZACE Company ZACE Company ZACE Company ZACE Company Flow Large displacements/fortalions/fatains Large displacements/fortalions/fatains Large displacements/fortalions/fatains	Settin	igs			<u> </u>												
Unis STANDARD W-M-m-deg-day-C Analysis and problem type Analysis and problem type Analysis and problem type Project discription Project discription Model description Autor ZACE Company ZACE Company ZACE Company ZACE Free Seld motion project Heat project Heat project Heat project Large displacements/fortaines/straines Large displacements/fortaines/straines	Versio	in type	Basic														
MATHYSIS and problem type Analysis and problem type Analysis and problem type 30 Analysis type 30 Problem type Flow Project tide scription Environmental type Model description ZACE Company ZACE Company ZACE Heat project Environments/rotalions/trains Large displacements/rotalions/trains False	Units		STANDARD	-													
Analysis type 30 Analysis type 30 Problem type Flow Flow Project description Project description Author ZACE Company ZACE Associated proprocessed projects Heat project Heat project Heat project Large displacements/totalons//trains Large displacements/totalons//trains Large displacements/totalons//trains			kNmdegda	nyC													
Adalysis type 3.0 Project tile control according to the second s	Analy	rsis and problem type	nd problem type														
Project description Project description Project description Author ZACE Company ZACE Associated proprocessed projects Heat project Humidity project Free Seld motion project Large displacements/totalions/strains Large displacements/totalions/strains	Analys	sis type	30														
Import description Zuoll example Model description Author Author ZACE Company ZACE Associated proprecessor d projects Heat project Humidip project	Proble	im type	Flow														
Projectal Constant Co	Proje	ct description	Zeeil evenele														
Mode second ZACE Company ZACE Company ZACE Associated proprecessed projects Heat project Heat project Free Seld motion project Large displacements/totalions/trains Large displacements/totalions/tot	Projec	t toe	2soil example														
Company ZACE Company ZACE Associated proprocessed projects Hardify project Large displacements/rotations/strains Large displacements/rotations False Large displacements/rotations False	Author	description	7405		-												
Company Exce	Comp	-	7405		-												
Association proprocessed projects Hamidity project Free field motion project Large displacements/rotations/strains Large displacements/rotations/ False Didata coordinates / data coordinates / Eale	Comp:	any sisted proprocessed pro	2AUCE														
Image project	Heate	voiect	Jocia														
Tere Seld motor project Large displacements/rotations/strains Large displacements/strains Large displacements/stra	Humid	ib project			-												
Largo displacements/rotations/strains OK Cancel Help Largo displacements/rotations/strains Felse Help	Free fi	eld motion project															
Large displacements/values False		displacements/rotation	e/strains									OK	Cancel	l Helj	р		
Indate contributes white constr. False	Large	displacements/rotations	Falso			_	_	_		_							
	Undat	a coordinates during constr	Falso		-												

学习如何设置驱动器列表,观看视频设置驱动器。

• 材料

混凝土的材料属性如下表所示:

材料	模型	数据组	属性	单位	值	
			Y_D	[kN/m ³]	0	
		重度	Y^F	[kN/m ³]	10	
			e_o	-	0.05	
	弹性	渗流	β^F	[kN/m ³]	10 ³⁸	
1 混凝土				K_x^t	[m/d]	10 ⁻²
			K_y^t	[m/d]	10^{-2}	
			K_z^t	[m/d]	10^{-2}	
			а	$[m^{-1}]$	0.5	
			Sr	_	0.2	

在最初构思的情况下,任何固体材料模型都可以使用,唯一有意义的参数被设置在重度和渗流组。初始孔隙比 e。和流体体积模量 β F 是瞬态分析的重要参数。这里没有指定应用于渗流表面单元的虚拟材料

(2)(自动估计惩罚参数的乘数等于默认值 1.0)。

荷载时间函数

与大坝上游面水位相关的荷载时间函数(定义为通过流体头的压力 BC)如下图所示。

了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 模型的生成

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 2. 创建一个新项目命名为:box-container.inp
- 2. 编辑荷载时间函数
- 3. 编辑材料
- 4. 创建建筑轴线
- 5. 创建宏观模型
- 6. 创建边界条件
- 7. 创建虚拟/真实的网格
- 8. 运行计算
- 9. 可视化的结果

2.3 加筋土桥台

- 数据文件: tutorials/rfslope.INP
- 描述

土工布加固桥台的安全性分析是本教程的目的。采用各向异性薄膜 模型,利用薄膜单元对五层土工织物进行建模。采用受柯仑摩擦定律控 制的界面接触单元,建立了土工织物与土的界面模型。桥台由主体荷载 和施加在桥顶混凝土基础上的两种集中力共同作用。在本教程中,我们 将展示如何及时生成模型,以考虑构建阶段的影响。桥台将分六步建 造。建造桥台需要五个步骤,在第六个步骤中将增加混凝土板。

问题的工程草图如下图所示:

以下方面是本示例中的兴趣点:

- 整体结构在条形荷载作用下的变形
- 土工格栅膜和界面的应力状态
- 结构整体安全系数

备注:

由于问题的对称性,只会生成一半的模型。

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

• 项目预选

在项目预选对话框中(在 ZSoil 的主菜单选项 File/NEW 中会自动出现) 分析类型选择◎3D,并从问题类型列表中选择 Deformation 项目。预定义 的系统的单位,无论是数据准备和可视化的结果,可以在 menu Control/Units 中确认。

Preferences	
Version type	Basic
Analysis type Problem type	3D
Project prese Frames o Dynamics Show me Show all o Show all o	lection nly Structures only Pushover aningful options only options (meaningful options in black, other in gray color piptions (ill in black color)
Project	
Model	
Author	
Company	
Unit system	STANDARD Show
Language	English OK Cancel

• 驱动器

整个计算过程将由两个驱动程序组成,即初始状态和时间相关/驱动负载。第一个驱动程序将给出 t=0 时刻的地应力状态,而第二个驱动程序可以跟踪所有的挖掘/施工步骤,包括试加载。

通过将区 Stage construction algorithm 选项设置为 ON,可以启用处 理构造阶段分析的特殊增量过程。所有施工步骤将按新层自重的 50%、 75%和 100% 3 个增量来解决。此外,在第一次步骤中(通过所有增量)每个 新添加的层都表现为不可压缩材料(通过内部设置 v = 0.49999)。在接下来 的时间步中,将使用泊松比的原始值。通过点击下图区 Stage

construction algorithm 旁边的按钮 **setting**,可以设置施工阶段分析的增量处理。对应设置如下图所示:

utum@utum.cn

武汉优土优木科技有限公司

急伏十伏木

Dri	vers definition											X
П	Driver	Туре	Ini. SF	factor	Fin. SF facto	r	Incremen	nt	Multiplier	Nonl. solver se	tings	Dyn. anal. settings
	Initial State		1		1		1			Default		
E	Time Dependent	Driven Load	0	[day]	7	[day]	1	[day]	1	Default	—	
E	Time Dependent	Driven Load	7	[day]	8	[day]	0.15	[day]	1	Default		
	Stability	tg(phi)-c	1.05		1.7		0.05			Default	—	
ľ	Stability	ta(phi)-c	1.7		3		0.05			Default		
					-							
Ľ				Project proc	verties							
				 Setting: Version I Units Analysis Problem Project I Model di Author Compan Associa Heatopo 	Settings Version type Units Analysis and problem type Units Analysis type Problem type Project description Project title Model description Author Company Associated preprocessed proj Meat renier			r-C				
		Stage construction algo	ithm	Humidity	Humidity project							
	Advanced	Activate Se	ttings	Free field	d motion project					OK	Canco	Holp
Ľ	Auvanceu			Large d	lisplacements/rol	tations	/strains				Cance	reip
				Undate d	spiacements/rotatio	constr	False					

在有限元模型级定义的两个外部节点力的一对外部载荷,按第三驱 动定义的7个步骤施加。

学习如何设置驱动器列表,观看视频设置驱动器。

• 存在函数

挖掘/建造事件的顺序由下图所示的存在函数控制。所有这些存在函数都是根据前面在问题描述中指定的事件序列定义的。在本教程中,我们将展示如何自动生成存在函数。

如需了解如何自动输入存在函数,请观看视频编辑存在函数。

• 荷载时间函数

与施加在混凝土板上的垂直集中力相关的荷载时间函数如图所示。

了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 材料

材料	模型	数据组	属性	单位	值
	0.1	74 11	Е	[kN/m ²]	80000
		理性	ν	-	0.32
		重度	YD	[kN/m ³]	19
			v ^F	[kN/m ³]	10
	莫尔-库仑		e_o		0.0
1 地基土		非线性	φ	[°]	20
			ψ	[°]	0
			C	[kN/m ²]	30
		计从 环 小 卡	K_{ox}^t		0.6
		初始 K ₀ 状态	K_{oz}^t	-	0.6
			K _{xx}	[kN/m]	600
	各向异性膜	弹性	K _{yy}	-	200
		A 10 and	K _{xy}	_	0
		重度	Y	[kN/m ³]	0.0
2 土工布		几何结构	Direction	_	0/0/1
		非线性	$\int f_{tx}$	[kN/m]	15.0
			f_{ty}	[kN/m]	5.0
			f_{cx}	[kN/m]	0.3
			f_{cy}	[kN/m]	0.1
		Non-linear	arphi	[°]	20
3 接触面	接触		ψ	[°]	0
			С	$[kN/m^2]$	10.0
	莫尔-库仑	Flastic	Е	$[kN/m^2]$	11000
		Liastic	υ	_	0.32
			Y_D	[kN/m ³]	18.5
4 接入上		Density	V^F	[kN/m ³]	10
4 价百土			e_o	-	0.0
			φ	[°]	30
		Non-linear	ψ	[°]	0
			С	$[kN/m^2]$	15
	弹性	Floatia	E	[kN/m ²]	3000000
		Elastic	υ	-	0.2
混凝土底脚		Density	Y_D	[kN/m ³]	24.0
			Y^F	[kN/m ³]	10
			e_o	_	0.0

地基土、桥台土、土工布、接触面和混凝土板的材料特性如下表所

在最初构思情况下,初始孔隙比和流体比重不起任何作用。要编辑 材质属性,请使用"组装/材质"菜单。要了解如何输入材料数据,请观 看视频编辑材料。

• 模型的生成

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

1. 创建一个新项目,命名为:rslope.inp

2. 编辑存在函数

- 3. 编辑加载时间功能
- 4. 编辑材料
- 5. 编辑驱动器
- 6. 创建建筑轴线
- 7. 创建宏观模型
- 8. 创建虚拟网格
- 9. 创建真实的网格,边界条件和节点负载
- 10. 运行计算
- 11. 可视化的结果

2.4 采用桩加固的基础筏

- 数据文件: tutorials/foundation-raft.INP
- 描述

本算例为 1.8m 厚的大型基础筏部分部位采用大量钻孔灌注桩加固的建模。模型的几何形状如下图所示。由于对偶对称,只对模型的四分之一进行分析。筏板中部的平均均布荷载(q₁ = 200kN/m²)高于其余部分(q = 120 kN/m²),因此预计该部分会有较大的差异沉降。为消除该部分的过度沉降,设计了一组直径 \$\phi\$ = 80cm、长 12m 的钻孔灌注桩,置于6m × 6m 的网格中。基础筏放置深度 5 米。

• 项目预选

在项目预选对话框中(在 ZSoil 的主菜单选项 File/NEW 中会自动出现)分析类型选择◎3D,并从问题类型列表中选择 Deformation 项目。 预定义的系统的单位,无论是数据准备和可视化的结果,可以在 menu Control/Units 中确认。

Preferences		
Version type	Basic 🔹	
Analysis type	3D •	
Problem type	Detormation	
Project presel	ection	
Frames or	ly Structures only	
Dynamics	Pushover 📀	
Show mea	aningful options only	
Show all o	ntions (meaningful options in black, other in gray color	
Show all o	ptions (all in black color)	\wedge
Project		
110,000		
Model		
Author		
Company		
Unit system	STANDARD Show	
Language	English OK Cancel	

整个计算过程将包括三个驱动程序,即初始状态和两个依赖于时间/ 驱动的负载驱动程序。第一个驱动器将屈服于时间 t=0 的地应力状态, 第二个驱动器将允许跟踪所有的挖掘/施工步骤,最后一个驱动器的设计 是控制筏的加载。

Dr	Drivers definition													
E	Driver	Туре		Ini. load fact	tor	Fin. load fac	tor	Incremen	nt	Multiplier	Nonl. solver s	ettings	Dyn. anal. settings	
	Initial State		1			1		0.1			Default			
	Time Dependent	Driven Load	0		[day]	3	[day]	1	[day]	1	Default			
	Time Dependent	Driven Load	3		[day]	5	[day]	0.5	[day]	1	Default			
														4
ľ														
L	Advanced										ОК	Cance	I Help	

学习如何设置驱动器列表,观看视频设置驱动器。

• 存在函数

挖掘/建造事件的顺序由下图所示的存在函数控制。所有这些存在函数都是根据前面在问题描述中指定的事件序列定义的。

了解如何输入存在函数观看视频编辑存在函数

• 荷载时间函数

在两个区域中与筏板加载(定义为均匀加载)相关的荷载时间函数如下图所示。

LT F1(t)负荷演化 q1

LT F1(t)负荷演化 q2

了解如何编辑荷载时间函数,观看视频编辑荷载时间函数。

• 材料

地基土、混凝土基础筏板、桩、桩端界面材料特性汇总如下表:

Material		Model	Data group	Properties	Unit	Value	
			山州	Е	[kN/m ²]	60000	
	地基土	莫尔-库仑	7年11年	υ	_	0.32	
				Y_D	[kN/m ³]	20	
			重度	Y^F	[kN/m ³]	10	
1				e_{o}	_	0.0	
1				arphi	[°]	25	
			非线性	Ψ	[°]	0	
				С	[kN/m ²]	15	
			初始毕本 V	K _{ox}	[-]	0.7	
			1777日17公式0	K_{oz}	[-]	0.7	
	筏	弹性壳	磁水	Е	[kN/m ²]	30000000	
2			 	υ	_	0.2	
			重度	Y	[kN/m ³]	24	
3	桩接触面	桩接触面		φ	[°]	20.46	
			非线性	Ψ	[°]	0	
				С	[kN/m ²]	12	
4	桩端界面	桩端界面	非化社	q_t	[kN/m ²]	0.0	
			非均性	q_c	[kN/m ²]	2850	
5		粱	母圣	E	[kN/m ²]	3000000	
	杧		计注	υ	-	0.2	
	1/12		重度	Y	[kN/m ³]	0	
			几何尺寸	Diameter	[m]	0.8	

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

注意: 混凝土容器的厚度假定为 1.8m, 并在预处理器中定义。

• 模型的生成

计算模型在以下步骤中建立,其中一些步骤以视频的形式记录下来。

- 1. 创建一个新项目:foundation-raft.inp
- 2. 编辑材料
- 3. 编辑存在函数
- 4. 编辑荷载时间函数
- 5. 编辑驱动器
- 6. 创建建筑轴线
- 7. 创建宏观模型
- 8. 创建筏荷载
- 9. 创建真实的网格和边界条件
- 10. 用筏连接桩头
- 11. 运行计算
- 12. 可视化的结果

索引

三维

分析和驱动, DP: 15, 16, DP: 80 **三维分析** 梁, TM: 173, TM: 178, TM: 181, TM: 183, TM: 190 连续介质有限元, TM: 103,104 增强假定应变, TM: 113 弹性模型, TM: 41 膜, TM: 208、TM: 211、TM:216 数值积分, TM: 105, TM: 145 壳、TM: 198 桁架, TM: 157, TM: 160

分析

批处理, DP: 623 重启计算, DP: 622 运行计算, DP: 621 运行计算不写*.dat, DP: 636 辅助平面, DP: 129

轴对称

分析与驱动, DP: 15TU: 15, DP: 16, DP: 80 梁(壳), TM: 171, TM: 178, TM: 181, TM: 183, TM: 190 连续介质有限元, TM: 103,104 增强假定应变, TM: 113-115, TM: 117 弹性模型, TM: 43 基础基准, BM: 22, BM: 24 膜, TM: 208、TM: 211、TM: 216 数值积分, TM: 105, TM: 145 桁架和圆形结构: 156, TM: 160, TM: 164

梁铰链

基准,BM:96,BM:98,BM:101 梁,TU:23,TM:170

2020.4.24

ZSoil[®]-3D-2PSHASE v.2020

www.utum.cn

分析解决方案基准, BM: 66 - 68, BM: 79, 80 轴对称壳基准, BM: 83-85 创建/大纲/更新/删除元素,DP:275 创建/大纲/更新/删除二维子域名, TU: 31, DP: 164 创建/大纲/更新/删除三维子域名, DP: 164 铰链,TM:188 二维定位, TU: 31, TM: 171 三维定位, TM: 171 钢筋混凝土基准, BM: 71,72, BM: 74 加固集, DP: 620 加固集, DP: 282, DP: 288 子域二维参数, DP: 183 子域三维参数, DP: 183 承载力 DP: 30-32 基础基准, BM: 16

边界条件

湿度, DP: 224, DP: 391 宏观单元湿度, DP: 224 孔隙压力, DP: 217, DP: 392 宏观单元孔隙压力, DP: 217 固相, DP: 379 温度, DP: 221, DP: 386 宏观单元温度, DP: 221 周期性, DP: 399

固结,TU:19

算法,TM:138 基准分析解决方案,BM:39 岩土方面;TM:254 材料模型;TM:44 数值实现,TM:98 超固结比,TM:263 问题陈述,TM:29

027-59764518

utum@utum.cn

构造算法 分析和驱动程序, DP: 16, TM: 283 联系 宏观模型, TU: 23, TU: 95, TU: 105, TU:111 二维连续体单元, DP: 301 二维连续体宏观模型 自动网格生成, DP: 198,199 网格变形, DP: 200 半自动网格生成, DP: 194, 195 子域生成, DP: 163, 164 虚拟网格, DP: 193-196 连续体三维元素, DP: 307 三维连续体宏观模型 网格变形, DP: 201 半自动网格生成, DP: 196, 197 子域生成, DP: 165-168, DP: 170, DP: 172, DP: 174 虚拟网格, DP: 196,197 二维对流宏观模型 子域生成, DP: 205 对流三维宏模型 子域生成, DP: 205

对流单元,DP: <mark>366</mark> 对流单元,TM: **130**

蠕变

分析解决方案基准,BM:46 标准属性,DP:525 膨胀属性,TM:86,DP:525

动力学

增加质量, DP: 417 相容质量矩阵, DP: 85 控制参数, TU: 48, DP: 85, 区域约简方法(DRM), TU:48, DP: 460 驱动器, TU:48 HHT 组合, DP: 85 总质量矩阵、DP: 85 质量滤波, DP: 87 Newmark 方案, DP: 85 瑞利阻尼, DP: 85

2020.4.24

ZSoil[®]-3D-2PSHASE v.2020

www.utum.cn

地震输入, DP: 618

弹性

常数,DP:7 材料属性,DP:518 以为弹塑性 模型,TM:227,DP:594 演化函数,DP:614

挖掘/阶段建设

算法,TM:283 存在函数,TM:283 显示预处理步骤,TU:31,TU:95, TU:105,TU:111 卸载功能,TM:283 卸载功能基准,BM:37 存在函数TM:283,DP:608

有限元模型预处理

复制元素/节点的常用方法, DP: 260 删除元素/节点的常用方法, DP: 260 移动元素/节点的常用方法, DP: 260 描述元素/节点的常用方法, DP: 260 旋转元素/节点的常用方法, DP: 260

有限单元

选择策略, DP: 95, DP: 97 压力振荡稳定, DP:97 容积锁定, DP: 96

渗流

分析, DP: 15, 16, TU: 28, DP: 50, TU:101 基准, BM: 57 流体头边界条件,TU:28,TU:101 通量边界条件, DP: 51, DP: 227 初始条件, DP: 51 初始状态驱动, DP: 50, DP: 53, TU:101 材料数据,TU:28,TM:44-46,DP: 50, TU: 101, DP: 521 压力边界条件,TU:28,DP:51,DP: 217 稳态驱动, TU: 28, DP: 50, DP: 54 时间相关驱动, DP: 54 瞬态驱动, DP: 50, DP: 55 快速帮助 数据准备 理论 基准测试

027-59764518

utum@utum.cn

流动单元 液体, DP: 425 热, DP: 428 湿度, DP: 429 宏观流动模型 液体, DP: 227 热, DP: 230 湿度, DP: 233 重力, DP: 616 体载分量, DP: 616 方向, DP: 616 热 分析, DP: 15, 16, TU: 38, DP: 56 解析解基准, BM: 61 流动边界条件,TM: 36, DP:57, DP: 230 初始条件, TM: 36, TU: 38, DP: 57, 58 初始状态驱动, TU: 38, DP: 56, DP: 58 材料性能,TM:36,TU:38,DP:532 数字实现, TM: 100 问题陈述, TM: 36 稳态驱动, DP: 56, DP: 59 温度边界条件, TM:36, DP: 57, DP: 221 热应变, TU: 38, DP: 81 时间相关驱动, DP: 56, DP: 59 瞬态驱动, TU: 38, DP: 56, DP: 60 铰链 梁单元, TM: 217, DP: 281, DP: 597 壳单元, TM: 219, DP: 375, DP: 600 湿度 分析, DP: 15, 16, 61 流动边界条件,TM: 38, DP: 62, DP: 233 湿度边界条件,TM:38,DP:62,DP: 224 湿应变, DP: 61, DP: 81 初始条件, TM: 38, DP: 62,63 初始状态驱动, DP: 61, DP: 63 材料属性, TM: 38, DP: 61, DP: 534 问题陈述, TM: 38

2020.4.24

ZSoil[®]-3D-2PSHASE v.2020

www.utum.cn

稳态驱动, DP: 64 时间相关驱动, DP: 61, DP: 64 瞬态驱动, DP: 65 无限单元, TM: 120, DP: 334 解析解基准, BM: 52

初始条件

位移, DP: 454 湿度, DP: 438 孔压 DP: 441, DP: 431 固体速度, DP: 454 温度, DP: 435

初始状态

算法,TM: 133 静止土压力(K₀), TM: 263, TM: 265 岩土工程方面, TM: 262

初始状态 Ko

材料属性, DP: 529

二**维界面** 材料数据组,TM: 230,TM: 241,TM:

246, TM: 251, 252 材质型号, TM: 230, TM: 241, TM: 246, TM: 251, 252

二**维界面宏观模型** 子域生成,DP:211

三维界面 材料数据组,TM:230,TM:241,TM: 246,TM:251,252

材质型号, TM: 230, TM: 241, TM: 246, TM: 251, 252

三维界面宏观模型 子域生成,DP:211

界面单元,TM:230,TM:241,TM:246, TM:251,252,DP:342 大变形界面单元,DP:356 运动约束,DP:462

大变形

分析和驱动程序, DP: 16 线性方程求解, DP: 90 天际线, DP: 90 稀疏, DP: 90 荷载时间函数, DP: 610

快速帮助 数据准备

027-59764518

utum@utum.cn

加载

体,DP:404 在梁单元上,DP:415 在单元表面,DP:408 在节点上,DP:406 在子域边界上,DP:248

宏观模型

二维网格映射, DP: 156 钻孔, DP: 471 挤出方向, DP: 159 流体流量, DP: 227 热流量, DP: 230 湿度, BC, DP: 224 湿度通量, DP: 233 土钉, TU: 78, DP: 241 对象, DP: 146 桩, TU:111,DP: 236 点, DP: 144 点负载, DP: 256 压力 BC, DP: 217 子域, DP: 160 子域参数, DP: 182 表面负载, DP: 248 温度 BC, DP: 221 虚拟到真实的网格转换, DP: 201

宏观建模对象

弧度, DP: 149
圆, DP: 150
常用方法, DP: 147
删除方法, DP: 155
DXF 导入, DP: 154
线, DP: 148
线(S)在边缘(S), DP: 150
大纲方法, DP: 155
点, DP: 148
乘飞机分离, DP: 154
表面交叉, DP: 151, DP: 202
表面上 Q4 骨架, DP: 151
表面上 T3 骨架, DP: 151
更新方法, DP: 156

ZSOIL 主菜单

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

分析选项, DP: 621 装配选项, DP: 100 控制选项, DP: 13, 14 控制:分析和驱动, DP:16 额外, DP: 636 文件选项, DP: 11 帮助.DP:638 后处理, DP: 624 系统配置, DP: III, DP: 637 工具栏, DP: 10 材料 蠕变属性组, TM: 79, DP: 525 数据组, DP: 518 数据库, DP: 480 弹性属性组, DP: 518 流动属性组, TM: 44, DP: 521 处理 DP: 478 热属性组, DP: 532 湿度性能组, DP: 534 初始Ko性能组, DP: 529 局部稳定性能组, DP: 535 模型, TM: 39, DP: 480 特性随空间变化, DP: 602 特性随时间变化, DP: 602 瑞利阻尼参数组, DP: 536 单位重量属性组, DP: 519 轴对称壳单元材料 线性弹性模型, DP: 493, DP: 497 非线性(层状)模型, DP: 493, DP: 497

横梁材料, DP: 482
光纤型号, TM: 227, 228
线性弹性模型, TU: 23, DP: 483, DP: 487
非线性(分层)模型, DP: 483, DP: 488, DP: 490
接触单元材料 DP: 499

摩擦接触模型, DP: 500

连续体单元材料,TM: 39,DP: 517
老化混凝土模型,TM: 90,DP: 538
致密化模型,DP: 561
DRUCKER-PRAGER 模型,TU: 15, TM: 51,DP: 546
HOEK-BROWN 模型,DP: 566

快速帮助 数据准备 理论 基准测试

027-59764518

utum@utum.cn

HOEK-BROWN 模型(2002 版), TM: 77 HOEK-BROWN M-W 模型, TM: 66, DP: 547 HS-小型号, TM: 76, DP: 556 线弹性模型, TM: 40, DP: 537, DP: 543 改进的 Cam Clay 模型, TM: 72, DP: 543 莫尔-库仑(M-W)模型, TM: 62, DP: 549 莫尔-库仑模型, TU: 11, TU: 19, TM: 50, DP: 554 混凝土塑性损伤, TM: 78, DP: 551TM: 91, DP: 570 Rankine(M-W) 模型, DP: 553 连续体单元结构材料, DP: 574 固定锚点界面元件粘接接触模型材料, DP: 515 固定锚固区界面材料, DP: 514 对流热单元对流模型材料, DP: 574 热辐射单元辐射模型材料, DP: 575 湿度对流元素对流模型材料, DP: 576 无限元线弹性模型材料, DP: 577 薄膜单元材料, TM: 213, DP: 578 各向异性弹塑性模型, TM: 213, DP: 583 纤维弹塑性模型, TM: 213, DP: 579 各向同性弹塑性模型, TM: 213, DP: 583 平面应力弹性模型, TM: 213, DP: 582 平面应力 HOEK-BROWN 模型, TM 213, DP 582 平面应力 HUBER-MISES 模型, TM 213, DP 582 平面应力朗肯模型, TM: 213, DP: 582 土钉界面单元材料, TU: 78, DP: 511 粘接接触模型, DP: 512 桩界面单元材料,TU111.DP: 504 摩擦接触模型, DP: 505, DP: 509 桩端界面单元材料,TU:111,DP: 508 渗水单元材料, DP: 585 壳单元材料,TM:198,DP:587

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn

老化混凝土模型, TM: 198 纤维模型, TM: 198 非线性(分层)模型, TM: 198, DP: 589 - 591 正交各向异性弹性模型, DP: 593, 594 二维膜 厚度, TM: 215 二维膜宏观模型 子域生成, DP: 164 三维膜宏观模型 子域生成, TU: 105, DP: 180 膜, TU: 105, TM: 208, DP: 328 加筋土基准, BM: 93 网结, DP: 467 节点链路, DP: 464

节点,DP:268 非线性求解器,DP:83 覆盖网格生成,DP:138

平面应变
分析和驱动, DP: 15, 16, DP: 80
梁, TM: 171, TM: 178, TM: 181, TM: 183, TM: 189
盒形介质基准, BM: 9
连续有限元单元, TM: 103,104
增强假定应变, TM: 113, TM: 117
弹性模型, TM: 42
基础基准, BM: 17
膜, TM: 208、TM: 211、TM: 216
数值积分, TM: 105, TM: 145
桁架, TM: 156, TM: 160

后处理

结构单元围护结构,DP:630 我怎么...DP:626 使用宏,DP:628 **偏好**,DP:143

预处理

有限元模型, DP: 102, DP: 259 主菜单, DP: 103 用户界面, DP: 102 快速帮助 数据准备 理论 基准

027-59764518

utum@utum.cn

预处理器

建筑线路, DP: 127 复制旋转选择的对象, DP: 124 对称复制, DP: 124 通过翻译复制选定对象, DP: 123 网格, DP: 128 导入几何模型, DP: 107 移动选定对象, DP: 122 旋转选定对象, DP: 122 旋择有限元, DP: 123 选择有限元, DP: 123 选择有限元, DP: 120 显示距离, DP: 136 显示左量, DP: 136 显示连续体元素的体积, DP: 136 快速选择, DP: 128

预处理器莱单

组装, DP:110 画, DP:125 边缘/面选择, DP:114 编辑, DP: 121 文件,DP:106 常用工具, DP: 138 全局选择工具, DP: 117 网格, DP:133 覆盖网格, DP: 136 参数, DP: 124 设置, DP: 141 显示施工/挖掘步骤, DP: 140 工具、DP:135 撤销, DP:111 视窗, DP: 112 窗口, DP: 107 预处理器工具栏 二维网格加密, DP: 134 三维网格加密, DP: 135 选择边, DP:116 选择面, DP:115 问题陈述, TM: 27 热.TM: 36 湿度, TM: 38 单相,TM:28

2020.4.24

ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn 两相, TM: 29

弹塑性分析 控制参数,DP:87 结果,DP:625

弹塑性分析控制节点, DP: 469

重新启动

控制, DP: 83

结果

内容, DP: 98 梁单元, DP: 99 连续单元, TM: 189, DP: 99 壳/膜元件, DP: 99,TM: 207 节点固体加速度, DP: 100 节点固体速度, DP: 100 节点残差, DP: 100 标准节点结果, DP: 100 存储频率, DP: 83

渗流二维宏观模型 子域生成, DP: 202

渗流三维宏观模型 子域生成,TU:101,DP:202 **渗流要素,DP:360**

壳 1L

厚度,TU: <mark>95</mark>, TU: 111, TM: 194

壳1L 宏观模型
挤出,TU:95,TU:111
子域生成,DP:176-179
虚拟网格,TU:95,TU:111,DP:197
壳单元,TM:191,DP:314
基准,BM:87-91
带有一层节点的壳单元,TU:95,TU:111,DP:321

壳铰链 基准, BM: 107, BM: 110, BM:113

单相

分析, DP: 15、16、DP: 21 驱动载荷驱动, TU: 15、DP: 28 有效应力分,、DP: 21

快速帮助 数据准备 理论 基准测试 TU-122

utum@utum.cn

结构

梁、TM: 171 表面方向,TM: 225 局部基底,TM: 226 膜,TM: 216 抵消,TM: 223 壳、TM: 191 桁架,TM: 155

子域

开挖前沿, DP: 185 表面项目子域, DP: 202

膨胀

分析解基准,BM:47 材料属性,TM:86,DP:525

肌腱

在连续体/壳体, DP: 339

桁架二维宏观模型 子域生成, DP: 164

桁架三维宏观模型

子域生成, DP: 164 **桁架单元**, TM: 156, DP: 291 预应力基准, BM: 35

两相

2020.4.24 ZSoil[®]-3D-2PSHASE v.2020 www.utum.cn 分析, DP: 15, 16, 37 盒形介质基准, BM: 11, BM: 13 固结驱动, DP: 44 驱动负载+稳态流驱动器, DP: 42 驱动负载+瞬态流量驱动器, DP: 43 基础基准, BM: 23 初始状态驱动, DP: 40 数值实现, TM: 98 问题陈述, TM: 29 边坡稳定基准, BM: 33 稳定驱动, DP: 46,47 时间相关驱动, DP: 46,47 时间相关驱动, DP: 42 不排水驱动, BM: 19, DP: 20, DP:22, TM: 33, DP: 37 38, DP: 67, DP: 522, 523

单位重量,

定义, DP:6 单相问题, DP:21, DP:27 在两相问题中, DP:47 材料属性, DP:519 单位, DP:91 基本, DP:7, DP:93 化合物, DP:94 转换, DP:92 设置基本单位, DP:91

粘性阻尼器二维宏观模型 子域生成, DP: 208

粘性阻尼器三维宏模型 子域生成,DP:208 粘性阻尼器,DP:371,DP:586 警告,DP:142

