# 教程4锚杆隧道

# 目录

| 1. 预览             | 2 |
|-------------------|---|
| 1.1 问题详述          | 2 |
| 2. <b>3D</b> 建模   |   |
| 2.1. 一般设置         |   |
| <b>2.2.</b> 几何    |   |
| 2.3. 3D 网格        |   |
| 3. 计算设置           |   |
| 3.1. 初始应力场的计算设置   |   |
| 3.2. 开挖 1 分析的计算属性 |   |
| 3.3. 开挖 2 分析的计算属性 |   |
| 3.4. 开挖 3 分析的计算属性 |   |
| 4. 求解             |   |
| 5. 结果分析           |   |
| Fill Hu           |   |



## 1. 预览

在本教程中,我们将模拟复杂地层中的加固隧道。首先,我们将创建土体。然后我们创建隧道的基本模型,输入土壤、岩石锚杆和喷射混凝土的特性,然后划分隧道并创建网格。最后,我们将进行施工阶段分析,并分析输出结果。

本教程描述了生成几何图形的主要 CAD 工具。此外,我们还生成了连接到 四面体网格的钢筋单元(岩石锚杆)。

注:本教程简化了项目的几何结构,并降低了网格密度(节点数),以提高计算速度。出于同样的目的,对材料参数也进行了调整。

#### 1.1 问题详述

一般假设:

静态分析

3D 几何

喷射混凝土用壳单元模拟

几何:



尺寸

官网: www.utum.cn 联系电话: 027-59764518-800 邮箱: utum@utum.cn



模型包括3种单元:

体单元=土体

1D-单元=锚杆

壳单元=喷射混凝土



材料属性:

岩石使用莫尔-库仑模型, 混凝土衬砌使用线弹性模型。

1 X 5

|           | γ<br><mark>(kN/m³)</mark> | E<br>(MPa)   | ν   | c<br>(kPa) | φ<br>(°)  | Ψ<br>(°) | Ко      |
|-----------|---------------------------|--------------|-----|------------|-----------|----------|---------|
| Hard rock | 24                        | 800          | 0,3 | 250        | 30        | 0        | 1       |
|           | 1-                        |              |     |            |           |          |         |
|           |                           | γ<br>(kN/m³) |     | E<br>(MPa) | ν         | e<br>(n  | e<br>n) |
| Shot      | crete                     | 25           |     | 15000      | 0,2       | 0,1      | 15      |
| 锚杆属性如     | 下:                        |              |     |            |           |          |         |
|           |                           |              |     | E<br>(MPa) | 5<br>(m²) |          |         |
|           | E                         | Bolts        | 2   | 200000     | 5.10-4    |          |         |

## 2.3D 建模

#### 2.1. 一般设置

设置长度单位为 m, 力为 MN, 位移为 mm。

#### 2.2. 几何

对于挖掘过程的建模,我们还将区分14次开挖,每次开挖由下面3个步骤组成:

锚杆(线单元)

土体开挖(体单元)

喷射混凝土 (壳单元)

隧道断面:

将工作平面设置为 OYZ,点击脚本,选择 TunnelM.xml(默认),选择"3 半径 2 角度",不勾选"不对称"和"椭圆反转"。

设置 R1=5m, A1=90°, R2=5m, A2=30°, 开挖计划选择全断面,应用。



| 6H- | Ŀ٦ | Ľ. |
|-----|----|----|
| 1田/ | M  | :  |

现在我们定义9根锚杆的位置。

官网: www.utum.cn 联系电话: 027-59764518-800 邮箱: utum@utum.cn



选择上半圆(2条弧),使用"切割"工具,将每段弧分成4等分。

| Cut                                         | Į ×                          |
|---------------------------------------------|------------------------------|
| Apply                                       |                              |
| Cut definition                              |                              |
| N=3                                         | ¥                            |
| Number of divisions                         | 4                            |
| Split of the selected edge<br>of divisions. | is into the specified number |



点击 1D 实体,勾选"交互",勾选"锚固",动态输入选择"长度/角度",点击其中一段弧的最低点,设置 L=3m, A=360°,按"Enter",一维实体就生成了。



### 按 Enter 前模型的状态

点击工具"平移/旋转/对称",选择旋转,次数为8,角度为22.5°,使 用两点定义旋转轴: P1(0,0,0),P2(1,0,0),应用。





在应用之前,点击显示时的预览效果

为了便于边界,可合并全部锚杆,给定一个颜色(如红色),有助于后面的操作。

选中全部锚杆,点击合并实体,点击一维实体,输入名称"锚杆1",应用。



开挖:

选择隧道面,拉伸,设置 Vx=1、Vy=0、Vz=0,应用,然后设置 Vx=-1、 Vy=0、Vz=0,应用。合并这两个实体,用于模拟 2m 的开挖,命名为"开挖 1"。







廊道有15次开挖,可通过对第一次开挖平移生成。

选择体实体"开挖 1"、1D-实体"锚杆 1"、面实体"喷射混凝土 1", 点击平移,设置 Vx=-2、Vy=0、Vz=0,次数为 14,应用。



<u>土体:</u>

为了便于操作新实体,我们先隐藏创建廊道时生成的全部实体(体、面、1 维实体),

选中全部实体,点击"隐藏选择"。



点击文件-导入,选择"Terrain.cleo36",软件安装目录中的 tutorial 文件 夹下。边和点被导入了,使用他们来创建上表面。



点击"点",添加A(1;-30;-25)、B(1;25;-25)、C(-29;25;-25)、D(-29;-30;-25),使用线工具,连接A-B-C-D-A,选择全部线,然后点击 "平面",即生成了底面。







<u>体相交:</u>

已经创建了 2 个独立的体: 土体和廊道(开挖),现在将其进行相交处理。

点击"体相交",勾选"选择实体/将选择作为工具",对象实体选土体,应用。



| Partitions                                                                            | Ą                                | ١× |  |  |
|---------------------------------------------------------------------------------------|----------------------------------|----|--|--|
| Apply                                                                                 |                                  |    |  |  |
| Partitions                                                                            |                                  |    |  |  |
| <b>\$</b>                                                                             |                                  |    |  |  |
| <ul> <li>Interactive</li> <li>Pick object and t</li> <li>Pick object / use</li> </ul> | ool<br>selection as tool         |    |  |  |
| Objects                                                                               |                                  |    |  |  |
| Object body                                                                           | [40] Soil                        | В  |  |  |
|                                                                                       |                                  |    |  |  |
| Partition of 2 bodies.                                                                |                                  |    |  |  |
| Step #1: Check the 'cut' option.                                                      |                                  |    |  |  |
| Step #2: Click on the b<br>Step #3: Click on the b                                    | ody to cut.<br>ody used as tool. |    |  |  |
|                                                                                       |                                  |    |  |  |





| Fi | x geometry                           | 4 ×          |
|----|--------------------------------------|--------------|
| C  | heck Check/select Fix                |              |
| Δ  | Database                             |              |
|    | Faces and volumes not used by bodies | V            |
|    | Shapes not attached to the database  | V            |
| 4  | Coincident shapes                    |              |
|    | Geometrically coincident shapes      | $\checkmark$ |
| 4  | Check edges                          |              |
|    | Degenerated edges                    | $\checkmark$ |
|    | Edges with length less than [m]      | 0.000        |
|    | Edges with bad parameters            | V            |
| 4  | Check faces                          |              |
|    | Degenerated faces                    | $\checkmark$ |
|    | Faces with bad orientation           | $\checkmark$ |
|    | Faces with bad tolerance             | V            |
| 4  | Check volumes                        |              |
|    | Solids with bad faces orientation    | V            |
|    | Extruded solids with errors          | V            |
| 4  | Check bodies                         |              |
|    | Bodies with errors                   | V            |
| 4  | Results                              |              |
|    | Faces with bad tolerance             | 1            |



## 2.3. 3D 网格

在高应力区域细化网格,即开挖廊道附近。

## 网格密度:

选择全部模型,点击固定长度密度,输入5m,确认。

官网: www.utum.cn 联系电话: 027-59764518-800 邮箱: utum@utum.cn 11



选择隧道的全部边,点击固定长度密度,输入1m,确认。 选择全部锚杆的边,点击固定长度密度,输入0.5m,确认。



♀有一种简单的方法可选中廊道和锚杆的全部边界,使用前视图,然后框选即可。

3D 网格划分:

首先划分锚杆,选择全部一维实体锚杆,点击"一维实体网格",选择 "线性插值",应用。再次选中锚杆,点击"几何-固定的(特殊单元)",选 择"创建",应用。





现在为体划分网格:

选择全部实体,点击"体网格",选择"线性插值",设置"四面体网格",选择默认的 Tetmesh 生成器,设置密度因子为1,网格创建方式选择"3 次",应用。





| Ν                | lesh properties               | <b>#</b> × |  |  |  |
|------------------|-------------------------------|------------|--|--|--|
| U                | Update Elements quality check |            |  |  |  |
| Δ                | Modelled bodies               |            |  |  |  |
|                  | Number of bodies              | 31         |  |  |  |
| Δ                | Mesh size                     |            |  |  |  |
|                  | Number of groups              | 166        |  |  |  |
|                  | Total number of nodes         | 13439      |  |  |  |
|                  | Total number of element       | 72038      |  |  |  |
|                  | 1D-elements                   | 810 (L)    |  |  |  |
|                  | Surface elements              | 0 (-)      |  |  |  |
|                  | Volume elements               | 71228 (L)  |  |  |  |
| $\triangleright$ | Mesh properties               |            |  |  |  |
| Δ                | Elements quality check        |            |  |  |  |
|                  | Number of elements ent        | 0          |  |  |  |
|                  | Number of elements par        | 0          |  |  |  |
|                  | Number of very distorted      | 0          |  |  |  |
|                  | Number of distorted surf      | 0          |  |  |  |
|                  |                               |            |  |  |  |
|                  |                               |            |  |  |  |
|                  |                               |            |  |  |  |

♀用户可查看单元、节点的数量,以 及网格的质量

- 1、 打开工具"网格属性"
- 2、 点击单元质量检查

最后,生成壳单元。

选中全部面实体,点击"面网格",依次选择"线性插值、三角网、3 次",应用。



## 3. 计算设置

#### 3.1. 初始应力场的计算设置

分阶段施工过程要求在施加荷载之前定义初始应力场。对于本项目,由于 顶面不是水平,我们不能使用"Ko程序"初始化。

#### 3.1.1 模型定义:

添加模型,命名为"初始化应力场"。勾选 MCNL、分步施工、一般初始 应力场,点击确认。

| Model definition                                                                 | N                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model name                                                                       | Initial stress Neld under gravity                                                                                                                                                                              |
| Comment                                                                          |                                                                                                                                                                                                                |
| Domain                                                                           | STATICS                                                                                                                                                                                                        |
| Solver                                                                           | MCNL                                                                                                                                                                                                           |
| Solver description                                                               | Solving of a mechanical problem with non<br>linear behaviour (material properties,<br>interfaces, staged construction).                                                                                        |
| © Staged construction<br>© Initial parameters<br>© Subsequent calculation        |                                                                                                                                                                                                                |
| Initialisation type description                                                  | Sequence of chained calculations. The<br>stress state of the stage #(n-1) initializes the<br>stress state of the stage #n. The<br>displacement fields are cumulative or reset<br>(set in "Analysis settings"). |
| Stage order                                                                      | 1                                                                                                                                                                                                              |
| <ul> <li>○ Geostatic stresses</li> <li>● General initial stress field</li> </ul> |                                                                                                                                                                                                                |
| Initial stress description                                                       | The stress field initialisation is made by<br>gravity loading of the soils either dry (total<br>stresses) or saturated depending of the WTB<br>position (effective stresses). Other options<br>are offered.    |

现在,数据树显示如下:





<u>3.1.2 材料数据:</u>

材料属性-体实体:

添加体实体属性,命名"rock",如下表:

|             | ր<br>(kg/mȝ) | E<br>(MN/m²) | ν    | c<br>(MN/m²) | φ<br>(°) | ψ<br>(°) |
|-------------|--------------|--------------|------|--------------|----------|----------|
| Rock for Ko | 2400         | 800          | 0,49 | 0,25         | 30       | 0        |
| Rock        | 2400         | 800          | 0,3  | 0,25         | 30       | 0        |

♀为了让岩体内 K₀=1,我们使用同样的参数新建"rock for K₀",只将泊松比
修改为 0.49。

材料属性-锚杆:

点击一维实体属性,命名"锚杆",类型选择"杆",输入如下参数:

| Name of the body | Туре | E<br>(MPa) | S<br>(m²)                 |
|------------------|------|------------|---------------------------|
| Bolts            | Bar  | 200 000    | <b>5.10</b> <sup>-4</sup> |

| - |                         |                     |  |
|---|-------------------------|---------------------|--|
| £ | Properties of 1D-bodies |                     |  |
| [ | <b>十</b> 回 它            | Properties set name |  |
|   | Туре                    |                     |  |
|   | Туре                    |                     |  |
|   | Mechanical properties   |                     |  |
|   | Ela2                    | Linear elasticity   |  |
|   | E [MN/m2]               | 2.000e+05           |  |
|   | Prestress properties    |                     |  |
|   | Activation ?            | C Yes<br>€ No       |  |
|   | Prestress force [MN]    | 0.000               |  |
|   | Geometrical properties  | N                   |  |
|   | S [m2]                  | 5.000e-04           |  |

材料属性-喷射混凝土:

新建面实体属性,命名"喷射混凝土",设置弹性参数和厚度。



|           | ρ<br>(kg/mȝ) | E<br>(MN/m²) | ν   | Thickness<br>(m) |
|-----------|--------------|--------------|-----|------------------|
| Shotcrete | 2500         | 15000        | 0,2 | 0,15             |



## 指定属性集:

将刚才新建的属性集赋予给相应的材料,注意土体用"Rock for K<sub>0</sub>"。

| Properties      | <b>4</b> х     |
|-----------------|----------------|
| Apply Show Edit |                |
| Definition      |                |
|                 |                |
| Material name   | Rock for Ko(1) |
| 2               |                |

激活/冻结实体:

在阶段1,全部实体都为土体,锚杆和喷射混凝土不用激活。 边界条件:\_\_\_\_\_

1X

荷载集:

点击重力,选择全部实体,应用。

官网: www.utum.cn 联系电话: 027-59764518-800 邮箱: utum@utum.cn 17

秴 武汉优土优木科技有限公司

计算参数:

在一般参数部分,输入如下值:

迭代过程:

最大增量步:1

每个增量步最大迭代次数: 500

容忍度: 0.01

求解方式: 1-初始应力法

算法类型:多波前

3.2. 开挖1分析的计算属性

本阶段中,采用全断面开挖,开挖后,断面上的开挖力就要应用上。当创 建一个新分析阶段时,很少能通过复制直接使用前一阶段的参数,往往需要做 些修改,激活属性和开挖力。

模型定义:

新建模型"初始化应力场",命名为"开挖1",点击确认。将上一阶段 的属性通过拖放复制过来,并将边界条件通过拖放分享。

|       | Choice of the drag and drop ac             |
|-------|--------------------------------------------|
|       |                                            |
|       | Copy Share Cancel                          |
| I     |                                            |
|       | $\Delta I$                                 |
| Ń.    | Study # ×                                  |
|       | Data tree Update                           |
|       |                                            |
|       | STATICS                                    |
| 7 X / | [4] [4] Initial stress field under gravity |
|       | [4]Properties                              |
|       | Boundary conditions                        |
|       | [4]Standard fixities                       |
|       | □ Loadings                                 |
|       |                                            |
|       | ▲ ☐ [5]Excavation #1                       |
|       | [5]Properties                              |
|       | Boundary conditions                        |
|       | [4]Standard fixities                       |
|       | Loadings                                   |
|       | [] [5]LoadSet1(3)                          |
|       | DYNAMICS                                   |
|       |                                            |
|       |                                            |



指定属性集:

将岩土体属性改为"岩石"。

激活/冻结单元:

全断面开挖模拟只需将断面1和衬砌1冻结即可。

边界条件:

无变化

荷载设置:开挖力1

土体移除后,会产生开挖力,点击荷载集,按 F2 重命名"开挖力 1",点击荷载,点击开挖力,勾选激活,设置 lambda=1,选择"初始应力场"作为原应力场,应用。

| Excavation forces - DE | с 🕂                        | < li |
|------------------------|----------------------------|------|
| Apply Show             |                            |      |
| Excavation forces      |                            |      |
| Active                 | $\checkmark$               |      |
| Definition             |                            |      |
|                        |                            |      |
| Stress release coeffi  | cient                      |      |
| Lambda []              | 1                          |      |
| Stress field before e  | xcavation                  |      |
| Stage                  | Initial stress field under |      |
| ivext stage            | Excavation #1 [IVICNL]     | -    |
|                        |                            |      |
|                        |                            |      |
| $\sim$                 |                            |      |

3.3. 开挖 2 分析的计算属性

本步骤中,我们继续向前开挖,并在先前开挖的第1段上激活喷射混凝土 和锚杆。

模型定义:

无变化

右键点击"初始应力场",复制模型,重命名为"开挖 2",确定,勾选 "属性"和"边界条件"。

官网: www.utum.cn 联系电话: 027-59764518-800 邮箱: utum@utum.cn 19



激活/冻结单元:

冻结断面 2 和衬砌 2, 激活喷射混凝土 1 和锚杆 1。

♀为了便于操作,用户可隐藏岩体。



边界条件:

无变化

荷载设置:开挖力2

荷载集需添加土体开挖形成的开挖力。



荷载集: 衬砌1自重



添加荷载集,命名为"衬砌1自重",确认。点击"重力",勾选自动选择,应用。

计算参数:

无变化

### 3.4. 开挖 3 分析的计算属性

本步骤中,我们继续向前开挖,并在先前开挖的第2段上激活喷射混凝土和锚杆。

模型定义:

右键点击"初始应力场",复制模型,重命名为"开挖 3",确定,勾选 "属性"和"边界条件"。

| Choice of the drag and drop ac 🔀 |               |       |    |  |  |  |  |
|----------------------------------|---------------|-------|----|--|--|--|--|
| Сору                             | <u>S</u> hare | Cance | el |  |  |  |  |

激活/冻结单元:

冻结断面 3 和衬砌 3, 激活喷射混凝土 2 和锚杆 2。

边界条件:

无变化

荷载设置:开挖力3

荷载集需添加土体开挖形成的开挖力。

| Excavation forces - DEC      | ą.                   | × |  |
|------------------------------|----------------------|---|--|
| Excavation forces            |                      |   |  |
| Active                       | $\checkmark$         |   |  |
| Definition                   |                      |   |  |
|                              |                      |   |  |
| Stress release coeffici      | ent                  |   |  |
| Lambda []                    | 1.000e+00            |   |  |
| Stress field before exercise | avation              |   |  |
| Stage                        | Excavation #2        | • |  |
| Next stage                   | Excavation #3 [MCNL] |   |  |
|                              |                      |   |  |

荷载集: 衬砌2自重

添加荷载集,命名为"衬砌2自重",确认。点击"重力",勾选自动选择,应用。

计算参数:

无变化

## 4. 求解

在本教程的范围内,我们在这里完成并运行计算。

用户将了解,主廊道2号和3号开挖建模过程可以以相同的方式复制。

勾选全部过程,分析。

|   | Id                        | Model name                                                                | Solver                   | PROP              | COND             | LOAD | DATA     | RES |
|---|---------------------------|---------------------------------------------------------------------------|--------------------------|-------------------|------------------|------|----------|-----|
| _ | 4                         | Initial stress field under gravity                                        | MCNL                     | 4                 | 4                | 4    | OK       | OK  |
|   | 5                         | Excavation #1                                                             | MCNL                     | 4                 | 3                | 4    | OK       | OK  |
|   | 6                         | Excavation #2                                                             | MCNL                     | 4                 | 4                | 4    | OK       | OK  |
|   | 7                         | Excavation #3                                                             | MCNL                     | 4                 | 4                | 4    | OK       | ОК  |
|   |                           |                                                                           |                          | Ģ                 |                  |      |          |     |
|   |                           | Actions:                                                                  | Create input             | files for the sol | lver and calcula | te   |          |     |
|   |                           |                                                                           |                          |                   |                  |      | Validate | Can |
|   | 課                         | 分析                                                                        |                          |                   |                  |      | Validate | Can |
|   | 果显动                       | 分析<br>示开挖3后的竖向应力                                                          | J.                       |                   |                  |      | Validate | Can |
|   | <b>課</b><br>显示<br>1       | <b>分析</b><br>示开挖 3 后的竖向应力<br>点击 <b>结果</b> 栏                               | J.o.                     |                   |                  |      | Validate | Can |
|   | <b>早</b><br>显元<br>1       | <b>分析</b><br>示开挖 3 后的竖向应力<br>点击 <b>结果</b> 栏                               | <b>〕</b> 。<br>米刑         |                   |                  |      | Validate | Can |
|   | <b>;果</b><br>显示<br>1<br>2 | 分析<br>示开挖 3 后的竖向应力<br>点击结果栏<br>点击 结果衫                                     | 力。<br>类型                 |                   |                  |      | Validate | Can |
|   | <b>;果</b><br>显元<br>1<br>2 | <b>分析</b><br>示开挖 3 后的竖向应力<br>. 点击 <b>结果</b> 栏<br>. 点击   结果约<br>- 选择网格     | 力。<br>类型<br>各变形          |                   |                  |      | Validate | Can |
|   | <b>扶果</b><br>显示<br>1<br>2 | 分析<br>示开挖 3 后的竖向应力<br>点击 <b>结果</b> 栏<br>点击   结果约<br>-   选择网格<br>-   勾选等值  | 力。<br>类型<br>各变形<br>直图,在列 | 表中选               | 择总应力             | J S1 | Validate | Can |
|   | <b>課</b><br>显元<br>1<br>2  | <b>分析</b><br>示开挖 3 后的竖向应力<br>点击 <b>结果</b> 栏<br>点击 结果衫<br>选择网格<br>选择网格<br> | 力。<br>类型<br>各变形<br>直图,在列 | 表中选               | 择总应力             | J S1 | Validate | Can |



0),应用。



| Cross-section plane             |                     | Ψ× |     |
|---------------------------------|---------------------|----|-----|
| Apply                           |                     |    |     |
| Clip plane definition           |                     |    |     |
|                                 |                     |    |     |
| Active                          | $\checkmark$        |    |     |
| Clipping cross section          | <b>V</b>            |    |     |
| Cross-section                   |                     |    |     |
| Clip plane definition           |                     |    | 1.  |
| Coordinates of a point on plane | 4.000; 0; 100.000   | Ρ  | / Z |
| X [m]                           | 4.000               |    |     |
| Y [m]                           | 0                   |    | -   |
| Z [m]                           | 100.000             |    |     |
| Normal to the plane             | 0.000; 1.000; 0.000 | V  |     |
| VX [m]                          | 0.000               |    |     |
| VY [m]                          | 1.000               |    |     |
| VZ [m]                          | 0.000               |    |     |





最后,我们将显示壳和锚杆的准确信息。

选择锚杆1,点击显示结果类型,勾选梁结果,应用。



选择衬砌1和衬砌2,点击显示结果类型,勾选壳法向应力Nz,应用。

