

教程 4 锚杆隧道施工

目录

1.	预览.		2
	1.1	教程目的	2
	1.2	问题详述	2
2. 2	2D 建枯	奠	6
	2.1.	一般设置	6
	2.2.	绘制几何	6
2.3	. 网格	ş	
3.	计算话	殳 <u>置</u>	13
	3.1.	编辑阶段1	13
	3.2.	编辑阶段 2	16
	3.3.	编辑阶段 3	19
	3.4.	编辑阶段 4	21
	3.5.	编辑阶段 5	23
4.	求解.		24
5.	结果.		25
	5.1.	位移	25
	5.2.	结构应力	

1. 预览

1.1 教程目的

隧道施工包括一系列通过不同土壤条件的施工过程。对于隧道工程师来说,准确地模拟该施工过程非常重要,因为它会显著影响项目周边环境(例如地表沉降) 或隧道结构(例如衬砌或喷射混凝土中的应力)。

CESAR-LCPC 为此类分析提供了一整套工具。

本教程的目的是确定混凝土隧道衬砌在使用期间的应力场。根据里昂-马赛高速铁路 Tartaiguille 隧道(Charmetton,2001年)的工程,对其进行了简化,以符合教程的目标。然而,它将引导用户完成隧道施工建模的各个方面。

1.2 问题详述

一般假定

- 开挖均匀且一直沿水平轴 Oz。隧道断面在 y 轴上对称。因此,在平面应 变分析条件下,选择模型的一半进行分析
- 土体的非线性行为
- 衬砌用体积单元模拟,混凝土假定为线弹性行为

几何定义

图 1: 项目几何详情

图 2: 隧道截面详情

阶段定义:

阶段 1: 由土体自重生成初始应力场

阶段 2: 开挖上台阶	阶段 3: 安装锚杆和上部衬砌,隧道开 挖面持续开挖会导致土体完全松弛
阶段 4: 开挖下台阶	阶段 5: 安装下部衬砌, 应力完全释放

材料属性:

假设土体和泥灰岩具有一样的均质属性

	γ _h (kN/m³)	E (MPa)	ν	c' (kPa)	φ' (°)	Ψ' (°)
Marls	23	1 500	0,3	300	20	0
Shotcrete	25	7 000	0,2	-	-	-

锚杆为圆截面杆件(E_s=21GPa;Φ_s=2.5cm)。由于我们在平面应变变形的假设 下进行二维建模,因此锚杆的杨氏模量和截面必须等效,以实现三维拉伸-压缩 行为的等效性。

考虑到每 2m 开挖长度加一圈锚杆,有以下等式:

$$E_{eq} \times S_{eq} = \frac{E_s \times S_s}{2}$$

因此,考虑到 E 相等,所以: $S_{eq} = \frac{S_s}{2}$

下表中列出了模型的参数:

	E _{eq} (MPa)	S _{eq} (m²)	
Bolt (equivalent)	210 000	2,4.10 ⁻⁴	•••

实体定义和状态:

重要的是标记不同的实体(使用名称),并在整个施工阶段确定其状态。这有 助于属性的输入和操作的管理。

图 3: 实体列表

Bodies	Stage #1	Stage #2	Stage #3	Stage #4	Stage #5
1	Marls	>		>	>
2	Marls	Inactive			
3	Marls	Inactive	Concrete		
4	Marls			Inactive	>
5	Marls			Inactive	Concrete
6	Inactive		Bolts		

边界条件:

由于存在垂直对称轴,水平位移沿垂直边界固定,x=0和 x=75m。 模型底部固定垂直位移。

网格:

在接近隧道的地方(出现高应变梯度的地方)细化网格,远离的地方逐步变粗。

2.2D 建模

2.1. 一般设置

- 1. 运行软件
- 2. 设置单位
 - 一般/长度设置为 m
 - 力学/力设置为 MN
 - 力学/位移设置为 mm
 - 力学/面,勾选科学计数法(E)
 - 应用
- 3. 在工作平面中 , 设置可见网格为 5m (dX=dy=5m)

♀使用"保存为默认"设置成属于你的工作环境。

2.2. 绘制几何

CESAR 配备了一套隧道界面设计工具。

- 1. 点击工具脚本
- 2. 选择 TunnelM.xml 作为 XML 脚本文件
- 在隧道几何中,选择 ,用 3 半径和 2 角度来定义隧道界面形状,然后
 选择开挖计划 (全断面)
 - 不对称? 否
 - 椭圆反转? 是
 - R1[m] 6.8m
 - A1[°] 90
 - R2[m] 9
 - A2[°] 30
 - R4[m] 18

应用

- 4. 重复上步操作,修改半径和角度,创建衬砌
 - 不对称? 否
 - 椭圆反转? 是
 - R1[m] 7.1m
 - A1[°] 90
 - R2[m] 9.3
 - A2[°] 30
 - R4[m] 18.3

应用

考虑轴对称问题,只选取模型的一半以减少节点和相关的计算时间。

使用线工具,添加竖向线段将模型分成两半,再添加一水平线段用于分布开挖。 然后删除另一半(如下图)。

绘制土体:

使用点和/或线绘制几何,如下图所示。

删除隧道的另一半后土体模型图

绘制锚杆:

将锚杆作为锚固 1D 实体引入。先创建一个,然后复制。

- 1. 选择工具锚固实体
- 2. 选择"方法 2"
- 3. 设置长度 4m,角度 0°,点击 A 点,生成一根水平锚杆,如下图所示

Anchor bodies	4 ×		
Apply Show			
Definition		1	
Actions:	Create •		A
Creation method			
Generation of ancho	Generation of anchors with length and angle		
Angle [deg]	0		
Charles and a state of a state of the	4.0		

- 1. 点击操作实体
- 2. 选择旋转并设置旋转参数
 - 移动选择对象=不激活
 - 操作数量=6
 - *- θ*=15
 - 中心 (0, 0)
- 3. 应用

实体编辑:

此步骤为可选,但有助于识别和选择实体组

- 1. 在选择工具中点击选择实体
- 2. 点击实体属性
- 3. 右击对应与土层的实体,命名为土,选择一个颜色,点击应用
- 4. 右击上衬砌,命名上衬砌,指定颜色,应用

😪 武汉优土优木科技有限公司

5. 右击下衬砌,命名下衬砌,指定颜色,应用

6. 右击上台阶,命名上台阶,指定颜色,应用

7. 右击下台阶,命名下台阶,指定颜色,应用

♀我们也可以合并锚杆。在几何栏中,使用合并实体

1. 选择代表锚杆的 1D 实体,命名锚杆,指定颜色,应用

2.3. 网格

2.3.1 密度定义

密度定义

♀在高应变区域定义密集分区,即在墙和锚附近。使用渐进密度定义可以在边界边上生成从小段到大段的渐进演变

- 1. 转到项目栏上的网格选项卡,开始沿直线定义分割
- 2. 选择隧道截面和锚杆,点击 [♀] **固定长度密度**为这些线段指定长度,在对 话框中输入 1m,点击应用
- 3. 点击^{*/p]} 渐进密度用不同的长度分割线段,定义方法勾选第一部分和最后 一部分
 - 第一段输入 0.4m, 最后一段输入 2m, 点击线段 A
 - 第一段输入 2m,最后一段输入 10m,点击线段 B
 - 第一段输入 0.4m, 最后一段输入 10m, 点击线段 C
- 4. 点击 [€] **固定长度密度**为最后两条线段和垂直边界指定长度,在对话框中 输入 10m,选择边界,点击应用

[]单击的位置定义初始分割的位置

图 4: 线段编号

♀CESAR-LCPC 提出了一种用于整合表面单元内部应力的后处理工具;结果是 一般的结构受力(M, N, V)。当这些单元为四边形时,应力积分能给出更好的 结果。因此,用户将生成适当的几何体(四边形曲面)以生成此类网格。

2.3.2 网格

CESAR-LCPC为曲面网格划分过程提供了3个级别,可生成粗网格或密集网格。 默认为"2次",在**偏好**>研究设置中设置3次(线性插值=粗糙,三次插值=密集)。

1D 实体网格:

从 1D 实体网格开始,因为它们是锚固单元,需要在土体之前划分网格

选择 1D 实体,选择 2 次插值,选择锚杆,点击应用,如果必要,可使用 1D 实体方向将其调整为统一方向。

♀用户可调整箭头的大小和方向,在项目设置中,显示属性下,设置矢量尺寸 为 0.02,箭头尺寸为 0.003

曲面实体网格:

选择面网格,选择二次插值,选择三角形,点击应用生成网格

图 5: 放大隧道截面和锚杆区域的网格

图 6: 查看全部网格

3. 计算设置

3.1. 编辑阶段 1

初始应力场使用"Ko过程"

模型定义:

在工作窗口的右侧,"树状视图"窗口显示物理域列表

- 1. 右击静力学,点击添加模型,会打开一个新的工具箱定义模型
- 2. 输入阶段1作为"模型名称"
- 3. 选择 MCNL 作为"求解器"
- 4. 勾选"平面应变"及"分步施工"
- 5. 勾选地应力作为初始类型,点击定义地应力
 - 点击插入定义新土层
 - 输入如下值:

Height	Unit weight	Ko_x	Ko_z
(m)	(MN/mȝ)	(-)	(-)
45	0.023	0.5	0.5

- 点击确认:

6. 点击确认

右侧数据树如下所示

固体实体材料属性: 为项目定义材料库

- 2. 为属性集命名(如混凝土)
 - 在**弹性参数**中,选择"各项同性线弹性"并定义ρ, E, ν

会 武汉优土优木科技有限公司

- 点击确认
- 3. 点击 , 创建其它属性集
 - 为属性集命名(例如泥灰岩)
 - 在**弹性参数**中,选择"各项同性线弹性"并定义ρ, *E*, ν
 - 在塑性参数中,选择"无硬化的莫尔-库仑"并定义\$c,\phi和\psi\$
 - 点击确认并关闭

	ρ (kg/m³)	E (MN/m²)	ν	c (MN/m²)	φ (°)	Ψ (°)
Concrete	2500	7 000	0,2	-	-	-
Marls	2300	1 500	0,3	0.02	30	10

Properties of surface bodies		>
[] ■ ④ ♡	Propert	ies set name Marls
Elasticity parameters	Plasticity parameters	
Plasticity parameters	Туре	Mohr-Coulomb without hardening
	c [MN/m2]	0.300
	φ [deg]	20.000
	ψ [deg]	0.000

锚杆材料属性:

为锚杆添加属性,类型为"杆件",定义刚度 E 和截面积 S

Name of the body	Туре	E (MN/m²)	S (m²)
Bolts	Bar	210 000	2,4.10 ⁻⁴

Properties of 1D-bodies		×
[] 🗐 🖄	Properties set name Bolts	~
🛛 Туре		
Туре	 Generation Bar ○ Friction bar ○ Beam 	
Mechanical properties		
Ela2	Linear elasticity	·
E [MN/m2]	2.100e+05	
Prestress properties		
Activation ?	C Yes € No	
Prestress force [MN]	0.000	
Geometrical properties		
S [m2]	2.400e-04	

指定数据集:

将数据集指定给模型中对应的实体

激活/冻结实体:

阶段1中,所有组都为土体,锚杆未激活

图 7: 阶段 1 中锚杆设置为"冻结"时模型的状态

边界条件:

选择"侧面和地面支撑",应用

<u>荷载集:</u>

用地应力定义初始应力场时无荷载,我们想单独查看该阶段

<u>计算参数:</u>

点击分析参数,在一般参数部分,输入如下值:

- 迭代过程:
 - 最大增量步:1
 - 每个增量步最大迭代次数: 500
 - 容忍度: 0.01
- 求解方式: 1-初始应力法
- 算法类型: Pardiso
- 分析类型:标准

3.2. 编辑阶段 2

在该阶段中,开挖上台阶,为了平衡模型,需施加开挖力。

在创建一个新分析阶段时,可以很方便地复制前一阶段的参数。在这里,我们 修改两场地方:

- 在属性中,激活锚杆实体
- 在荷载中,激活开挖力

模型定义:

新建模型,命名为"阶段2",选择分布施工

现在复制前一模型的数据集,从阶段1复制属性到阶段2,选择复制,复制边界条件时选择分享。

现在数据树如下图所示:

🟫 武汉优土优木科技有限公司

激活/冻结实体:

将上台阶和上衬砌冻结

图 8: 阶段 2 冻结实体后的模型状态

<u>边界条件:</u>

无变化

荷载设置:

由于掌子面还不够远, 仅应用 40%的开挖力 (λ = 0.4)

<u>分析设置:</u>

无变化

图 9: 显示开挖力

3.3. 编辑阶段 3

在该阶段,我们激活衬砌和锚杆,掌子面足够远了,土体完全松弛

模型定义:

由于阶段 3 和阶段 2 大部分参数相同,我们复制阶段 2 并修改,复制后命名为"阶段 3",选择分布施工,在弹窗中勾选边界条件。

Model sharing options		×
		Properties 🗌
	Bound	ary conditions 🗹
		Loadings 🗌
	Validate	Cancel

激活/冻结实体:

激活上部衬砌和锚杆

图 10: 阶段 3 激活实体后的模型状态

指定材料:

将"混凝土"指定给上部衬砌

边界条件:

无变化

荷载设置:

随着掌子面的推进,土体应力完全释放,设置λ = 0.6表示 100%应力释放

激活隧道衬砌重力,添加荷载集,命名为上部衬砌自重,点击重力,点击自动 选择,应用,图上会显示"重力"

<u>分析设置:</u>

无变化

图 11: 阶段 3 显示开挖力

3.4. 编辑阶段 4

开挖下部衬砌

模型定义:

复制阶段3的模型,命名为"阶段4",只勾选边界条件。

激活/冻结实体:

将下台阶和下部衬砌冻结

图 12: 阶段 4 冻结实体后的模型状态

边界条件:

无变化

荷载设置:

添加荷载集,命名为"开挖下台阶",设置开挖力λ = 0.4,删除阶段 3 中的荷载 (开挖力和衬砌自重)

分析设置:

无变化

Excavation forces - DEC	Ψ×
Apply Show	
Active	
∠ Definition	
Stress release coefficient	
Lambda [] 4.000e-01	
Stress field before excavation	
Stage Phase #2	
Next stage Phase #3 [MCNL]	

图 13: 阶段 4 显示开挖力

3.5. 编辑阶段 5

激活下部衬砌, 土体应力完全释放

模型定义:

由于阶段 5 和阶段 4 大部分参数相同,我们复制阶段 4 并修改,复制后命名为"阶段 5",选择分布施工,在弹窗中勾选边界条件。

Model sharing options		×
		Properties 🗌
	Bound	ary conditions 🗹
		Loadings 🗌
	Validate	Cancel

激活/冻结实体:

激活下部衬砌

指定材料:

将"混凝土"指定给下部衬砌

边界条件:

无变化

荷载设置:

随着掌子面的推进,土体应力完全释放,设置λ = 0.6表示 100%应力释放

激活隧道衬砌重力,添加荷载集,命名为下部衬砌自重,点击重力,点击自动 选择,应用,图上会显示"重力"

分析设置:

无变化

图 14: 阶段 5 显示开挖力

4. 求解

点击分析, 计算, 勾选全部阶段, 点击确认。

5. 结果

5.1. 位移

1. 点击**结果**栏

- 2. 点击 = 结果类型
 - 选择网格变形
 - 勾选等值图, 在列表中选择|μ|, 总位移
 - 应用
- 3. 点击 网格设置
 - 选择组边界,作为网格边界样式
 - 应用
- **新**等值图设置 4. 点击
 - 勾选绘制等值图,作为等值线样式
 - 勾选等值线并选择灰色
 - 应用
- 5. 点击 图例
 - 选择等值图作为图例类型
 - 勾选"图例边框"
 - 应用

可得到图 15

- 图 17 显示了隧道完成后地面沉降
- 1. 点击图表栏
- 2. 选择土体表面的边界

C→ 3. 点击 **→→** , 线设置

😭 武汉优土优木科技有限公司

- 给线集命名,如表面

- 添加

- 4. 激活, 线集图表
 - 选择 v, 垂直位移作为参数
 - 选择表面作为线集
 - 选择增量1
 - 应用

图 15: 显示阶段 5 的总位移

我们也可以单独查看隧道截面,得到锚杆和衬砌的受力 选中隧道截面,点击仅显示选择

图 18: 显示阶段 5 的总位移——放大隧道和锚杆部分

5.2. 结构应力

获得锚杆的受力,点击结果类型,选择未变现网格,勾选 1D 实体结果,选择 法向力,点击应用

图 19: 显示阶段 5 中锚杆的轴力

为了得到衬砌的受力,我们将在衬砌厚度上每个截面对应力进行积分,首先我 们生成积分线。

点击图表,选择选择隧道断面外拱处的边,点击线集,命名"外拱",点击"线 集图",选择 N,轴力作为参数,选择"外拱"为线集,选择增量_1,应用。

重复上一操作得出弯矩分布

图 20: 在隧道外拱处生成线集

图 21: 阶段 5 结束时, 衬砌的轴力

令一定要注意网格类型和密度对标量值影响很大,因为结果来自对衬砌厚度截面的法向应力积分,强烈推荐使用四边形单元。